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Using an integral transform with a mild singularity, we obtain series representations valid
for specific regions in the complex plane involving trigonometric functions and the central
binomial coefficient which are analogues of the types of series representations first studied
by Ramanujan over certain intervals on the real line. We then study an exponential
type series rapidly converging to the special values of L-functions and the Riemann zeta
function. In this way, a new series converging to Catalan’s constant with geometric rate of
convergence less than a quarter is deduced. Further evaluations of some series involving
hyperbolic functions are also given.
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1. Introduction

Our purpose in this paper is twofold. First we introduce an integral transform having a mild singularity and in particular
generalizing the classical representation (see [23])
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for the polylogarithm function of order n � 2, where z is a complex number with |z| � 1. With the help of our transform,
we then show how to find analogues of certain series representations involving trigonometric functions and the central
binomial coefficient. Such type of series were first studied by Ramanujan [24,25]. We refer the reader to the monograph
of Berndt [15] which gives further enlightening discussions on the nature of these representations. Ramanujan proved for
example that
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for any real number x with |x| � π
4 . In this way, Ramanujan obtained striking rapidly convergent series for the Catalan

constant and ζ(3), where ζ(s) is the Riemann zeta function. Concerning Catalan’s constant, he showed that (see [24,25,15,
18])
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In recent work, Batır [11] obtained further interesting series related to these constants. An advantage of our approach is that
one can even derive such series representations to be valid for specific regions in the complex plane. As a second goal, we
study certain exponential type series rapidly converging to the special values of L-functions and the Riemann zeta function.
Precisely, our first result is as follows.

Theorem 1. Let F1 be a region in the complex plane defined by the conditions | sin 2z| � 1 and |R(z)| � π
4 . Then for any z ∈ F1 , we

have
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where Γ is the Gamma function and the principal branch of the logarithm is used.
Let F2 be a region in the complex plane defined by the conditions | sin z| � 1 and |R(z)| � π

2 . Then for any z ∈ F2 , we have
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where the principal branch of the logarithm is used.
Let F3 be a strip in the complex plane defined by the condition |R(z)| � π

4 . Then for any z ∈ F3 , we have
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where the principal branch of the logarithm is used.

Let us remark that putting z = x + iy, the region F1 in the above theorem can be described alternatively as the set of
all points (x, y) in the plane satisfying the conditions |x| � π

4 and e4y + e−4y − 2 cos 4x � 4. In particular, if |x| = π
4 , then it

follows easily that (−π
4 ,0) and ( π

4 ,0) are the only possible points in this region. A similar description for F2 can be given
as well. Next let
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be the mth Bernoulli polynomial, where B j denotes the jth Bernoulli number. For any real number a, Bm(a) can be obtained
from the Taylor series expansion
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about zero, where the radius of convergence is 2π . Such expansions are often useful for studying generating functions of
special values of L-functions. The classical formula
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furnishes a striking example of this. Inspired by certain mock theta function identities arising from Ramanujan’s lost note-
book (see [7]), Andrews, Urroz and Ono [8] showed that this phenomenon is indeed quite general and they have found
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