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In this paper, we are concerned with a Chemotaxis–Navier–Stokes model, arising from biol-
ogy, which is a coupled system of the chemotaxis equations and the viscous incompressible
fluid equations with transport and external force. The optimal convergence rates of classi-
cal solutions to the Chemotaxis–Navier–Stokes system for small initial perturbation around
constant states are obtained by pure energy method under the assumption the initial data
belong to Ḣ−s ∩ H N , N � 3 (0 � s < 3/2). The Ḣ−s (0 � s < 3/2) negative Sobolev norms
are shown to be preserved along time evolution. Compared to the result in [5], we obtain
the optimal decay rates of the higher-order spatial derivatives of the solutions.

© 2013 Published by Elsevier Inc.

1. Introduction

Chemotaxis is a biological process in which cells (e.g., bacteria) move towards a chemically more favorable environment.
For example, bacteria often swim towards higher concentration of oxygen to survive. Generally, the motion of the fluid
is determined by the well-known incompressible Navier–Stokes equations or Stokes equations. Thus, this kind of cell–fluid
interaction becomes more complicated since it not only consists of chemotaxis and diffusion, but also includes transport and
viscous fluid dynamics. In particular, it is interesting and important in biology to study some phenomenon of sedimentation
on the basis of the coupled cell–fluid model. In [11], the authors observed large-scale convection patterns in a water drop
sitting on a glass surface containing oxygen-sensitive bacteria, oxygen diffusing into the drop through the fluid-air interface
and they proposed this model:⎧⎪⎪⎨

⎪⎪⎩
∂tn + u · ∇n = δ�n − ∇ · (χ(c)n∇c

)
,

∂tc + u · ∇c = μ�c − k(c)n,

∂t u + u · ∇u + ∇ P = ν�u − n∇φ,

∇ · u = 0, t > 0, x ∈ R3.

(1)

Here, the unknowns are n = n(t, x), c = c(t, x), u = u(t, x), P = P (t, x) denoting the cell density, chemical concentration,
velocity field and pressure of the fluid, respectively. Ω is a domain where the cells and the fluid move and interact. Positive
constants δ, μ and ν are the corresponding diffusion coefficients for the cells, chemical and fluid. χ(c) is the chemotactic
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sensitivity and k(c) is the consumption rate of the chemical by the cells. φ(x) is a given potential function accounting the
effects of external forces such as gravity. The system (1) is supplied with initial conditions

(n, c, u)|t=0 = (
n0(x), c0(x), u0(x)

)
, x ∈ Ω,

and some proper boundary conditions. The experimental set-up corresponds to mixed-type boundary conditions [11]. How-
ever, we work in full space R3.

In this paper, we consider the decay rates of (1) by using an energy method under the assumption that the initial datum
(n, c, u) is a small smooth perturbation of the constant state (n̂,0,0) with n̂ > 0. In [5] Duan et al. not only obtain the
global solution for small smooth perturbation but also get the optimal rates of (1) by Lp estimates method under suitable

assumption. In [5], under the assumption (n0 − n̂, c0) ∈ L1(R3) u0 ∈ Lq(R3) and φ ∈ L∞(R+; L
2q

2−q (R3)), q ∈ (1, 6
5 ) they get

the decay rate⎧⎪⎪⎨
⎪⎪⎩

‖n − n̂‖L p � C‖n0 − n̂‖L1∩L p (1 + t)−
3
2 (1− 1

p )
, 1 � p < ∞,

‖c‖L p � C‖c0‖L1∩L p (1 + t)−
3
2 (1− 1

p )
, 1 � p < ∞,

‖u‖L2 � C
(‖u0‖L1∩H3 + ‖(n0 − n̂, c0)‖L1∩H3 + ‖n0 − n̂‖L1∩L2‖c0‖L1∩L2

)
(1 + t)−

3
2 ( 1

q − 1
2 )

.

(2)

For 2 � p < ∞, the decay rates of cell density n and chemical concentration c were obtained by L p energy method in [7].
The decay estimates of cell density n and chemical concentration c for 1 � p � 2 are obtained because they can directly get
(n, c)(t) ∈ L1 under the initial data (n, c)(0) ∈ L1. By interpolation method, they get the decay estimates of cell density n
and chemical concentration c for all 1 � p < ∞.

By using the pure energy method similar to [12] and supplying with initial data in different H3 ∩ Ḣ−s (0 � s < 3
2 )

spaces, we find the (1) enjoy the same decay rates for Lp norm. But we extend the velocity with the same decay rate for
all 2 � p < ∞ and the nonlinear convective term u · ∇u in (1) is considered too. The decay rate of higher derivative is
obtained too. This method contain two parts: 〈1〉 closing the energy estimates at each k-th level (referring to the order of
the spatial derivatives of the solution), which will be obtained in Section 4; 〈2〉 deriving a novel negative Sobolev estimates
for nonlinear system which requires s < 3/2, which will be obtained in Section 5.

Next, let us mention some work concerned to this work. For the system (1) and related systems there is a local exis-
tence result in [9]. In [5], the authors proved global existence for (1) with the simpler Stokes equations in R2 and small
perturbation Cauchy solution in R3. In [6], existence issues and asymptotic behaviour are investigated in R2 or R3. In [8],
the authors obtain the global existence of weak solutions for the chemotaxis-Stokes system with nonlinear diffusion for the
cell density.

The Keller–Segel system is the best-studied model for chemotaxis. In the Keller–Segel system, the chemical is produced
and not consumed as in our case. For the elliptic–parabolic Keller–Segel model, in [2], the authors summarises the results,
i.e. there is a critical mass M , below M they obtained the global existence and above M they got finite-time blow-up. For
the parabolic–parabolic Keller–Segel model recent progress has been achieved in [3]. For more references on the general
Keller–Segel system, the interested reader can refer to recent work [1,3]. Kinetic models for chemotaxis can be found in [4].

Notation. In this paper, ∇k with an integer k � 0 stands for the usual any spatial derivatives of order k. ‖ f ‖Lp denotes
the usual norm in Lp spaces. We also use 〈,〉 denote the inner product in L2 spaces. In other word, 〈 f , g〉 = ∫

R3 f × g dx.
C denotes a constant independent of time t , and C0 denotes a constant only dependent on initial data. (n̄,0,0) is the steady
state and the ρ(t) := n(t, x) − n̄ denotes the density perturbation around the steady state.

Λs f (x) =
∫
R3

|ξ |s f̂ (ξ)e2π ix·ξ dξ, (3)

where f̂ is the Fourier transform of f . We define the homogeneous Sobolev space Ḣ s of all f for which ‖ f ‖Ḣ s is finite,
where

‖ f ‖Ḣ s := ∥∥Λs f
∥∥

L2 = ∥∥|ξ |s f̂
∥∥

L2 . (4)

Throughout this paper, we also assume the following conditions:⎧⎪⎪⎨
⎪⎪⎩

(i), δ > 0, μ > 0, v > 0,

(ii), n0(x) � 0, c0(x) � 0, ∇ · u0(x) = 0 for all x ∈ R3,

(iii), χ(·), k(·) and φ(·,·) are smooth with χ(0) = k(0) = 0, and k′(c) � 0 for all x ∈ R,

(iv), supt�0

∥∥φ(t, x)
∥∥

L3 < ∞.

(A)

Our main results are stated in the following theorem.
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