J. Math. Anal. Appl. 410 (2014) 70-81

Contents lists available at ScienceDirect Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

CrossMark

The mean transform of bounded linear operators

Sang Hoon Lee^{a,1}, Woo Young Lee^{b,*,2}, Jasang Yoon^c

^a Department of Mathematics, Chungnam National University, Daejeon 305-764, Republic of Korea

^b Department of Mathematics, Seoul National University, Seoul 151-747, Republic of Korea

^c Department of Mathematics, The University of Texas-Pan American, Edinburg, TX 78539, United States

ARTICLE INFO

Article history: Received 22 October 2012 Available online 14 August 2013 Submitted by J.A. Ball

Keywords: The mean transform The Aluthge transform k-hyponormal Subnormal Weighted shifts

ABSTRACT

In this paper we introduce the mean transform of bounded linear operators acting on a complex Hilbert space and then explore how the mean transform of weighted shifts behaves, in comparison with the Aluthge transform.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{H} be an infinite dimensional complex Hilbert space and $\mathcal{B}(\mathcal{H})$ be the algebra of bounded linear operators acting on \mathcal{H} . For $T \in \mathcal{B}(\mathcal{H})$, let T = U|T| be the polar decomposition of T. The *Aluthge transform* \widetilde{T} of T is defined by $\widetilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$. This transform was first studied in [1] and has received much attention in recent years, in particular, in relation to the invariant subspace problem. The *Duggal transform* \widetilde{T}^D of T is defined by $\widetilde{T}^D = |T|U$, which is first referred to in [12]. Clearly, the spectrum of \widetilde{T} (resp. \widetilde{T}^D) equals that of T. For $\alpha \equiv \{\alpha_k\}_{k=0}^{\infty}$ a bounded sequence of positive real numbers (called weights), let $W_{\alpha} \equiv \text{shift}(\alpha_0, \alpha_1, \ldots) : \ell^2(\mathbb{Z}_+) \to \ell^2(\mathbb{Z}_+)$ be the associated (*unilateral*) weighted shift, defined by $W_{\alpha}e_k :=$ $\alpha_k e_{k+1}$ (all $k \ge 0$), where $\{e_k\}_{k=0}^{\infty}$ is the canonical orthonormal basis in $\ell^2(\mathbb{Z}_+)$. If \widetilde{W}_{α} is the Aluthge transform of W_{α} , then we can see that $\widetilde{W}_{\alpha} = \text{shift}(\sqrt{\alpha_0\alpha_1}, \sqrt{\alpha_1\alpha_2}, \ldots)$, where we note that each term of weights of \widetilde{W}_{α} consists of the geometric mean of two consecutive terms of W_{α} . In this paper we introduce a new transform: if T = U|T| is the polar decomposition of T, then we define

$$\widehat{T} := \frac{1}{2} \big(U |T| + |T| U \big) \equiv \frac{1}{2} \big(T + \widetilde{T}^D \big),$$

which will be called the *mean transform* of *T* and then examine various questions on the mean transform. In particular we will focus on the mean transform of weighted shifts. If \widehat{W}_{α} is the mean transform of the weighted shift $W_{\alpha} = \text{shift}(\alpha_0, \alpha_1, \ldots)$, then we can see that $\widehat{W}_{\alpha} = \text{shift}(\frac{\alpha_0 + \alpha_1}{2}, \frac{\alpha_1 + \alpha_2}{2}, \ldots)$ (see Proposition 2.2 below). In comparison with

^{*} Corresponding author.

E-mail addresses: slee@cnu.ac.kr (S.H. Lee), wylee@snu.ac.kr (W.Y. Lee), yoonj@utpa.edu (J. Yoon).

 $^{^{1}}$ The first named author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2013R1A1A2008640).

 $^{^2}$ The second named author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2009-0083521).

the Aluthge transform of weighted shifts, the weights of the mean transform of weighted shifts consist of the arithmetic means of two consecutive weights of W_{α} . This suggests there would be a significant difference or resemblance between the Aluthge transform and the mean transform. First of all, we list problems in which we are interested:

Problem 1.1. Does the spectrum of \hat{T} equal that of *T*?

Problem 1.2. Given the mean transform map $T \to \hat{T}$, (i) is it $(\|\cdot\|, \|\cdot\|)$ -continuous on $\mathcal{B}(\mathcal{H})$?; (ii) is it $(\|\cdot\|, SOT)$ -continuous on $\mathcal{B}(\mathcal{H})$?

Problem 1.3. For $k \ge 1$, if W_{α} is k-hyponormal, does it follow that the mean transform \widehat{W}_{α} is also k-hyponormal?

Problem 1.4. If W_{α} is subnormal with Berger measure μ , does it follow that \widehat{W}_{α} is subnormal? If it does, what is the Berger measure of \widehat{W}_{α} ?

In Section 2 we provide basic properties of the mean transform \hat{T} . In Section 3 we consider the *k*-hyponormality and the subnormality for the mean transform of the weighted shifts and moreover the continuity properties of the mean transform.

2. Basic properties of the mean transform \widehat{T}

If \hat{T} is the mean transform of T, then we can easily check that $\|\hat{T}\| \leq \|T\|$ in general. How about the spectrum of \hat{T} ? It is well known that the spectrum of the Aluthge transform \tilde{T} (resp. the Duggal transform) equals that of T. We may ask what happens for the spectrum of the mean transform \hat{T} of T. We first give an answer for Problem 1.1. For this, we let $P \in \mathcal{B}(\mathcal{H})$ be a positive operator and consider an operator matrix $T := \begin{pmatrix} 0 & P \\ 0 & 0 \end{pmatrix} \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$. Then $\sigma(T) = \{0\}$. A direct calculation shows that T = U|T|, with $U := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $|T| := \begin{pmatrix} 0 & 0 \\ 0 & P \end{pmatrix}$. We thus have that $\hat{T} = \frac{1}{2} \begin{pmatrix} 0 & P \\ P & 0 \end{pmatrix}$. Observe that

$$\widehat{T}^2 = \frac{1}{4} \begin{pmatrix} P^2 & 0\\ 0 & P^2 \end{pmatrix}$$
, and hence $\sigma(\widehat{T}^2) = \left\{ \frac{\sigma(P^2)}{4} \right\}$

which implies $\sigma(\widehat{T}) = \{\pm \frac{\sigma(P)}{2}\}$. Thus we obtain:

Example 2.1. Let $T := \begin{pmatrix} 0 & P \\ 0 & 0 \end{pmatrix} \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$, where $P \in \mathcal{B}(\mathcal{H})$ is a positive operator. Then we have

(i)
$$\sigma(T) = \{0\};$$

(ii) $\sigma(T) = \{\pm \frac{\sigma(P)}{2}\}.$

Hence, in particular, $\sigma(T) \neq \sigma(\widehat{T})$ if $P \neq 0$, while $\|\widehat{T}\| \leq \|T\|$.

Since the Duggal transform \tilde{T}^D shares many spectral properties with T (besides $\sigma(T) = \sigma(\tilde{T}^D)$) and $\hat{T} = \frac{1}{2}(T + \tilde{T}^D)$, one might be tempted to guess that $\sigma(T) \subseteq \sigma(\hat{T})$. But Example 2.1 illustrates that this is not such a case: consider the case P = I. On the other hand, we note that if we define d(T) for the deviation from the normaloid-ness (normaloid means that norm equals spectral radius) by

d(T) := ||T|| - r(T) (where r(T) denotes the spectral radius of T),

then *T* in Example 2.1 has $d(\hat{T}) = 0$, i.e., \hat{T} is normaloid, even though d(T) = ||P||. Thus it may happen that \hat{T} becomes a nice operator (i.e., normaloid) by filling out something (i.e., $r(\hat{T}) = \frac{r(P)}{2}$, but r(T) = 0), but by contrast, the Aluthge transform \tilde{T} becomes a nice operator by collapsing something (i.e., $\tilde{T} = 0$, but $T \neq 0$).

The iterated mean transforms (or mean iterates) of an operator T are the operators $\hat{T}^{(n)}$ $(n \ge 0)$, defined by setting $\hat{T}^{(0)} = T$ and letting $\hat{T}^{(n+1)}$ be the mean transform of $\hat{T}^{(n)}$.

We then have:

Proposition 2.2. For a weighted shift W_{α} , the mean iterates $\widehat{W}_{\alpha}^{(n)}$ are also weighted shifts with weight sequences

$$\alpha^{(n)} \equiv \left\{\alpha_i^{(n)}\right\}_{i=0}^{\infty} := \left\{\frac{\sum_{j=0}^n {n \choose j} \alpha_{i+j}}{2^n}\right\}_{i=0}^{\infty},\tag{2.1}$$

where $\binom{n}{j} = \frac{n!}{j!(n-j)!}$.

Download English Version:

https://daneshyari.com/en/article/6418714

Download Persian Version:

https://daneshyari.com/article/6418714

Daneshyari.com