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Estimating the counting function for the eigenvalues of the twisted bi-Laplacian leads
to the Dirichlet divisor problem, which is then used to compute the trace of the heat
semigroup and the Dixmier trace of the inverse of the twisted bi-Laplacian. The zeta
function regularizations of the traces and determinants of complex powers of the twisted
bi-Laplacian are computed. A formula for the zeta function regularizations of determinants
of heat semigroups of complex powers of the twisted bi-Laplacian is given.
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1. Introduction

The twisted Laplacian L on R
2 is the second-order partial differential operator given by

L = −� + 1

4

(
x2 + y2) − i

(
x

∂

∂ y
− y

∂

∂x

)
, (1.1)

where

� = ∂2

∂x2
+ ∂2

∂ y2
.

Thus, the twisted Laplacian L is the Hermite operator

H = −� + 1

4

(
x2 + y2)

perturbed by the partial differential operator −iN , where
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N = x
∂

∂ y
− y

∂

∂x

is the rotation operator.
That H is called the Hermite operator is due to the fact that Hermite functions are the eigenfunctions of H . See, for

instance, Section 6.4 in [9]. That N is called the rotation operator can be attributed to the fact that in polar coordinates,

N = ∂

∂θ
,

which is the simplest differential operator on the unit circle centered at the origin.
The twisted Laplacian appears in harmonic analysis naturally in the context of Wigner transforms and Weyl trans-

forms [2,12]. In the paper [1], it is shown that L is essentially self-adjoint, and the spectrum Σ(L0) of the closure L0 is
given by a sequence of eigenvalues, which are odd natural numbers, i.e.,

Σ(L0) = {2k + 1: k = 0,1,2, . . .}.
It should be noted, however, that each eigenvalue has infinite multiplicity.

Renormalizing the twisted Laplacian L to the partial differential operator P given by

P = 1

2
(L + 1), (1.2)

we see that the eigenvalues of P are the natural numbers 1,2, . . . , and each eigenvalue, as in the case of L, has infinite
multiplicity.

Now, the conjugate L of the twisted Laplacian L is given by

L = −� + 1

4

(
x2 + y2) + i

(
x

∂

∂ y
− y

∂

∂x

)
(1.3)

and after renormalization, we get the conjugate Q of P given by

Q = 1

2
(L + 1). (1.4)

The aim of this paper is to analyze the heat kernels and Green functions of complex powers of the twisted bi-Laplacian M
defined by

M = Q P = P Q = 1

4
(H − iN + 1)(H + iN + 1), (1.5)

where P and Q commute because it can be shown by easy computations that H and N commute, i.e., H N f = N H f for all
functions f in C∞(R2).

It is proved in [3] that M is essentially self-adjoint on L2(R2). The unique self-adjoint extension of M on L2(R2) is again
denoted by M .

In order to describe the spectral properties of M precisely, let us first recall that the Fourier–Wigner transform V ( f , g)

of two functions f and g in the Schwartz space S(R) on R is the function in the Schwartz space S(R2) on R
2 given by

V ( f , g)(q, p) = (2π)−1/2

∞∫
−∞

eiqy f

(
y + p

2

)
g

(
y − p

2

)
dy,

for all q and p in R. For k = 0,1,2, . . . , the Hermite function ek of order k is defined on R by

ek(x) = 1

(2kk!√π)1/2
e−x2/2 Hk(x), x ∈R, (1.6)

where Hk is the Hermite polynomial of degree k given by

Hk(x) = (−1)kex2
(

d

dx

)k

e−x2
, x ∈R. (1.7)

Now, for j,k = 0,1,2, . . . , we define the function e j,k on R
2 by

e j,k(x, y) = V (e j, ek)(x, y), x, y ∈R. (1.8)

It can be shown that {e j,k: j,k = 0,1,2, . . .} forms an orthonormal basis for L2(R2). See, for example, Theorem 21.2 in [12].
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