Existence and multiplicity of solutions for a class of elliptic boundary value problems

Xingyong Zhang
Department of Mathematics, Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China

A R T I C L E I N F O

Article history:

Received 21 October 2012
Available online 14 August 2013
Submitted by Goong Chen

MSC:

35J65
35J20
47J10

Keywords:
Infinitely many solutions
Symmetric mountain pass theorem
Mountain pass theorem
Super-quadratic condition
Pinching condition

A B S T R A C T

In this paper, we investigate the existence and multiplicity of solutions for the following elliptic boundary value problems

$$
\begin{cases}-\Delta u+a(x) u=g(x, u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $g(x, u)=-K_{u}(x, u)+W_{u}(x, u)$. By using the symmetric mountain pass theorem, we obtain two results about infinitely many solutions when $g(x, u)$ is odd in u, K satisfies the pinching condition and W has a super-quadratic growth. Moreover, when the condition " $g(x, u)$ is odd" is not assumed, by using the mountain pass theorem, we also obtain two existence results of one nontrivial weak solution. One of these results generalizes a recent result in Mao, Zhu and Luan (2012) [10].
© 2013 Elsevier Inc. All rights reserved.

1. Introduction and main results

In this paper, we investigate the following elliptic boundary value problems

$$
\begin{cases}-\Delta u+a(x) u=g(x, u) & \text { in } \Omega \tag{1.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded domain of $\mathbb{R}^{N}(N \geqslant 3)$ with smooth boundary $\partial \Omega, g \in C(\bar{\Omega} \times \mathbb{R}, \mathbb{R})$ and $a \in L^{N / 2}(\Omega)$.
When $a(x) \equiv 0$, system (1.1) reduces to

$$
\begin{cases}-\Delta u=g(x, u) & \text { in } \Omega, \tag{1.2}\\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

Via variational methods, there have been lots of contributions on existence and multiplicity of solutions for system (1.1) and (1.2), see $[1-10]$ and references therein. It is well known that a famous super-quadratic condition is the AmbrosettiRabinowitz (AR) condition: there exist $\mu>2, l_{0}>0$ such that

$$
0<\mu G(x, z) \leqslant z g(x, z), \quad \text { for all }|z| \geqslant l_{0}, x \in \Omega,
$$

where $G(x, z)=\int_{0}^{z} g(x, s) d s$. The (AR)-condition has been extensively applied to study the existence and multiplicity of solutions for many differential systems, for example, Hamiltonian system and damped differential system, see [2,11-17].

[^0]There are lots of super-quadratic functions which do not satisfy (AR)-condition, for example,

$$
G(x, z)=|z|^{2} \ln \left(1+|z|^{2}\right)
$$

There have been some contributions which devoted to improve (AR)-condition, see [3,7-10,18-22]. For system (1.1), under more general conditions than (AR)-condition, recently, in [7], Jiang and Tang obtained that system (1.1) has a nontrivial solution by using a local linking theorem due to Li and Willem (see [6]) and in [8] and [9], those authors obtained system (1.1) has infinitely many solutions by using a variant of the Fountain theorem. Fountain theorem was obtained by Bartsch in [25]. Except that the case $G(x, z)$ is asymptotically-quadratic was also considered in [8], in all results in [7-9], $G(x, z)$ is super-quadratic. Recently, Mao, Zhu and Luan in [10] investigated system (1.2) under one new case that $G(x, z)=-K(x, z)+$ $W(x, z)$, where K satisfies the pinching condition and W is super-quadratic, which is called mixed type nonlinearities. They obtained system (1.2) has a nontrivial weak solution.

In this paper, motivated by [3] and [10], we will investigate system (1.1) which is quite different from system (1.2). By using the symmetric mountain pass theorem, we obtain two results about infinitely many solutions when $g(x, u)$ is odd in u, K satisfies the pinching condition and W has a super-quadratic growth. Moreover, when the condition " $g(x, u)$ is odd" is not assumed, we also obtain two existence results of one nontrivial weak solution by using the mountain pass theorem. One of these results generalizes the result in [10] and our results are also different from those in [7-9] since we consider the mixed type nonlinearities. Next, we state our results.

Let

$$
G(x, z)=\int_{0}^{z} g(x, s) d s, \quad \tilde{W}(x, z)=\frac{1}{2} W_{z}(x, z) z-W(x, z)
$$

Theorem 1.1. Assume the following conditions hold:
$\left(\mathcal{L}_{0}\right) 0 \notin \sigma(-\Delta+a)$, where $\sigma(-\Delta+a)$ denotes the spectrum of $-\Delta+a$;
(G1) $G(x, z)=-K(x, z)+W(x, z), K, W: \Omega \times \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ are C^{1}-maps;
(G2) $g(x, u)$ is odd in u;
(K1) there are two positive constants b_{1} and b_{2} such that

$$
b_{1}|z|^{2} \leqslant K(x, z) \leqslant b_{2}|z|^{2}, \quad \text { for all }(x, z) \in \Omega \times \mathbb{R}
$$

(B) $1-2 b_{2} \tau_{2}^{2}>2 b_{1} \tau_{2}^{2}$, where τ_{2} is the embedding constant in $H_{0}^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$;
(K2) $0 \leqslant K_{z}(x, z) z \leqslant\left|K_{z}(x, z)\right||z| \leqslant 2 K(x, z)$, for all $(x, z) \in \Omega \times \mathbb{R}$;
(W1) $\lim _{|z| \rightarrow 0} \frac{W_{z}(x, z)}{|z|}<2 b_{1}$ uniformly in x;
(W2) $\underset{\tilde{W}}{W}(x, 0) \equiv 0, W(x, z) \geqslant 0$ and $W(x, z) / z^{2} \rightarrow \infty$ as $|z| \rightarrow \infty$ uniformly in x;
(W3) $\tilde{W}(x, z)>0$ if $z \neq 0, \tilde{W}(x, z) \rightarrow \infty$ as $|z| \rightarrow \infty$ uniformly in x, and there exist $r_{0}>0$ and $\sigma>N / 2$ such that $\left|W_{z}(x, z)\right|^{\sigma} \leqslant$ $c_{0} \tilde{W}(x, z)|z|^{\sigma}$ if $|z| \geqslant r_{0}$.

Then system (1.1) has an unbounded sequence of solutions.
Note that in [21], Costa and Magalhães first used the condition $\tilde{W}(x, z) \rightarrow \infty$ as $|z| \rightarrow \infty$ uniformly in x, which is weaker than the (AR)-condition and useful in proving the Cerami condition (C) introduced by Cerami in [24].

If (W1) is strengthened to $(\mathrm{W} 1)^{\prime}$ below, then (\mathcal{B}) in Theorem 1.1 can be relaxed to $(\mathcal{B})^{\prime}$ below.
Theorem 1.2. Assume (\mathcal{L}_{0}), (G1), (G2), (K1), (K2), (W2), (W3) and the following conditions hold:
(W1) $\lim _{|z| \rightarrow 0} \frac{W_{z}(x, z)}{|z|}=0$ uniformly in x;
$(\mathcal{B})^{\prime} 1-2 b_{2} \tau_{2}^{2}>0$.
Then system (1.1) has an unbounded sequence of solutions.
If (\mathcal{L}_{0}) and the symmetric condition (G2) is deleted, we can show that system (1.1) has a nontrivial solution. To be precise, we have the following two theorems.

Theorem 1.3. Assume that (G1), (K1), (W1)', (W2), (W3) and the following conditions hold:
(K2)' $K(x, z) \leqslant K_{z}(x, z) z \leqslant\left|K_{z}(x, z)\right||z| \leqslant 2 K(x, z)$, for all $(x, z) \in \Omega \times \mathbb{R}$;
$(\mathcal{B})^{\prime \prime} b_{1}>1$ and there exists θ such that $\max \left\{-\mu_{1}, 0\right\}<\theta<b_{1}-1$, where μ_{1} is the smallest eigenvalue of $-\Delta+a$.
Then system (1.1) has a nontrivial solution.

https://daneshyari.com/en/article/6418745

Download Persian Version:

https://daneshyari.com/article/6418745

Daneshyari.com

[^0]: E-mail address: zhangxingyong1@163.com.

 0022-247X/\$ - see front matter © 2013 Elsevier Inc. All rights reserved.

