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! was shown that the method always succeeds in computing a CPA Lyapunov function for
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such a system. The size of the domain of the computed CPA Lyapunov function is only
limited by the equilibrium’s basin of attraction. However, for some systems, an arbitrary

f;ix;gi function small neighborhood of the equilibrium had to be excluded from the domain a priori. This
Nonlinear system is necessary, if the equilibrium is not exponentially stable, because the existence of a CPA
Exponential stability Lyapunov function in a neighborhood of the equilibrium is equivalent to its exponential
Basin of attraction stability as shown in [11]. However, if the equilibrium is exponentially stable, then this was
CPA function an artifact of the method. In this paper we overcome this artifact by developing a revised
Piecewise linear function CPA method. We show that this revised method is always able to compute a CPA Lyapunov

Linear programming function for a system with an exponentially stable equilibrium. The only conditions on the

system are that it is C2 and autonomous. The domain of the CPA Lyapunov function can
be any a priori given compact neighborhood of the equilibrium which is contained in its
basin of attraction. Whereas in a previous paper [10] we have shown these results for
planar systems, in this paper we cover general n-dimensional systems.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Lyapunov functions, first introduced in [23], are a fundamental tool to determine the stability of equilibria and their
basins of attraction. They can be used for very general systems, e.g. nonautonomous systems [22,35,16], arbitrary switched
nonautonomous systems [15], or differential inclusions [5], but in this paper we concentrate on autonomous systems.

Consider the autonomous system x = f(x), f € C2(R", R"), and assume that the origin is an exponentially stable equilib-
rium of the system. Denote by A its basin of attraction. The standard method to verify the exponential stability of the origin
is to solve the Lyapunov equation, i.e. to find a positive definite matrix Q € R™" that is a solution to JTQ + Q J = —P,
where ] := Df(0) is the Jacobian of f at the origin and P € R™*" is an arbitrary positive definite matrix. Then the func-
tion X — X' QX is a local Lyapunov function for the system x = f(x), i.e. it is a Lyapunov function for the system in some
neighborhood of the origin, cf. e.g. Theorem 4.7 in [22]. The size of this neighborhood is a priori not known and is, except
for linear f, in general a poor estimate of A, cf. [13]. This method to compute local Lyapunov functions is constructive
because there is an algorithm to solve the Lyapunov equation that succeeds whenever it possesses a solution, cf. Bartels and
Stewart [3].
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The construction of Lyapunov functions for true nonlinear systems is a much harder problem than for linear systems.
However, it has been studied intensively in the last decades and there have been numerous proposals of how to construct
Lyapunov functions numerically. To name a few, Johansson and Rantzer proposed a construction method in [18] for piece-
wise quadratic Lyapunov functions for piecewise affine autonomous systems. In [7], Eghbal, Pariz, and Karimpour formulate
the computation of piecewise quadratic Lyapunov functions for planar piecewise affine systems as linear matrix inequalities.
In [32], Ratschan and She give an interval based branch-and-relax algorithm to compute polynomial Lyapunov-like func-
tions for polynomial ODE. Another approach to numerically investigate the stability of nonlinear systems is, for example,
given by Oishi in [27], where he considers the probabilistic computation of a stable control for systems that are parameter
dependent, linear, and discrete. He uses a parameter dependent Lyapunov function.

Julian, Guivant, and Desages [20] and Julian [19] present a linear programming problem to construct piecewise affine
Lyapunov functions for autonomous piecewise affine systems. This method can be used for autonomous, nonlinear systems
if some a posteriori analysis of the generated Lyapunov function is done. In [17], Johansen uses linear programming to pa-
rameterize Lyapunov functions for autonomous nonlinear systems, but does not give error estimates. In [33], Rezaiee-Pajand
and Moghaddasie proposed a different collocation method using two classes of basis functions. Giesl [8] proposed a method
to construct Lyapunov functions for autonomous systems with an exponentially stable equilibrium by numerically solving a
generalized Zubov equation, cf. [36]. A solution to Zubov’s equation is a Lyapunov function for the system. He uses radial
basis functions to approximate the solution and derives error estimates.

Parrilo [29] and Papachristodoulou and Prajna [28] consider the numerical construction of Lyapunov functions that can be
expressed as sum of squares (SOS) of polynomials for autonomous polynomial systems. These ideas have been taken further
by recent publications of Peet [30]| and Peet and Papachristodoulou [31], where the existence of a polynomial Lyapunov
function on bounded regions for exponentially stable systems is established. The Lyapunov functions are computed by
means of convex optimization and are true Lyapunov functions and not approximations.

A complete Lyapunov function, first introduced by Conley in [6], is a generalization of a Lyapunov function for compact
invariant sets, as discussed here, to an object completely characterizing the decomposition of a flow into a chain-recurrent
and a gradient-like part. Norton [26] even suggested that this characterization should be referred to as the Fundamental
Theorem of Dynamical Systems. In [21], Kalies, Mischaikow and VanderVorst present an algorithmic approach to construct
approximations to complete Lyapunov functions for discrete dynamical systems. By considering the time-T map of a contin-
uous system, this method can be used to find an approximation to a complete Lyapunov function for a continuous dynamical
system as well. In [2], Ban and Kalies implement this algorithm and give examples of computed Lyapunov functions.

In [25], Hafstein (alias Marinosson) presents a method to compute piecewise affine Lyapunov functions. In this method
one first triangulates a compact neighborhood C C A of the origin and then constructs a linear programming problem with
the property that a continuous Lyapunov function V, affine on each n-simplex of the triangulation, i.e. a CPA Lyapunov
function, can be constructed from any feasible solution to it. In [13] it was proved that for exponentially stable equilibria
this method is always capable of generating a Lyapunov function V : C\ N'— R, where N C C is an arbitrary small,
a priori determined neighborhood of the origin. In [14], these results were generalized to asymptotically stable systems, in
[15] to asymptotically stable, arbitrary switched, nonautonomous systems, and in [1] to asymptotically stable differential
inclusions.

In [9], the authors showed that the triangulation scheme used in [25,13-15] does in general generate suboptimal trian-
gles at the equilibrium. However, in the same paper they proposed a new, fan-like triangulation around the equilibrium, and
proved that a piecewise linear Lyapunov function with respect to this new triangulation always exists for planar systems.
In [10], the authors showed how to compute a CPA Lyapunov function algorithmically for planar systems by using linear
optimization. The modification to the algorithm in [15] is to use a fine, fan-like triangulation around the equilibrium, as sug-
gested in [9]. The general n-dimensional case was treated in [11], where the authors proved, using different methods than
in [9], that a piecewise linear Lyapunov function with respect to a modified, fan-like triangulation around the equilibrium
always exists. However, the proof was non-constructive and it was not shown how to explicitly compute such a function.
In this paper, the authors finish the work from [9-11] and deliver an algorithm to compute a CPA Lyapunov functions in
n-dimensions and prove that the algorithm always succeeds in a finite number of steps whenever the system possesses an
exponentially stable equilibrium.

The numerical discretization method presented in this paper is somewhat unusual since it is exact, i.e. it computes a true
Lyapunov function and not an approximation. This is possible since a Lyapunov function is characterized through inequalities
rather than equalities. Some other methods to construct Lyapunov functions, for example, the SOS method in [30,31], also
share this property. It should, however, be noted that the interplay between continuous systems and their discretization
is very well understood. In particular, many important dynamical properties like attractors and basins of attraction are
inherited by discretization, even for control systems. For a detailed discussion of this see the important work of Griine [12].

Let us give an overview over the contents: In Section 2 we define a linear programming problem in Definition 6 and
show that a solution of this problem parameterizes a CPA Lyapunov function in Theorem 1. In Section 3, we explain in
Definition 17 how to algorithmically find a suitable triangulation for the linear programming problem from Definition 6. The
main result is Theorem 5, showing that the algorithm from Definition 17 always succeeds in computing a CPA Lyapunov
function for a system with an exponentially stable equilibrium. In Section 5 we give examples of CPA Lyapunov functions
computed by our method. The paper ends with some concluding remarks in Section 6.
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