Connections between discriminants and the root distribution of polynomials with rational generating function

Khang Tran ${ }^{1}$
Department of Mathematics and Computer Science, Truman State University, United States

A R T I C L E I N F O

Article history:

Received 31 October 2012
Available online 26 August 2013
Submitted by K. Driver

Keywords:

Zero distribution
Chebyshev polynomials
Generating function
Three-term recurrence

Abstract

Let $H_{m}(z)$ be a sequence of polynomials whose generating function $\sum_{m=0}^{\infty} H_{m}(z) t^{m}$ is the reciprocal of a bivariate polynomial $D(t, z)$. We show that in the three cases $D(t, z)=$ $1+B(z) t+A(z) t^{2}, D(t, z)=1+B(z) t+A(z) t^{3}$ and $D(t, z)=1+B(z) t+A(z) t^{4}$, where $A(z)$ and $B(z)$ are any polynomials in z with complex coefficients, the roots of $H_{m}(z)$ lie on a portion of a real algebraic curve whose equation is explicitly given. The proofs involve the q-analogue of the discriminant, a concept introduced by Mourad Ismail.

(c) 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study the root distribution of a sequence of polynomials satisfying one of the following three-term recurrences:

$$
\begin{aligned}
& H_{m}(z)+B(z) H_{m-1}(z)+A(z) H_{m-2}(z)=0 \\
& H_{m}(z)+B(z) H_{m-1}(z)+A(z) H_{m-3}(z)=0 \\
& H_{m}(z)+B(z) H_{m-1}(z)+A(z) H_{m-4}(z)=0
\end{aligned}
$$

with certain initial conditions and $A(z), B(z)$ polynomials in z with complex coefficients. For the study of the root distribution of other sequences of polynomials that satisfy three-term recurrences, see [8] and [11]. In particular, we choose the initial conditions so that the generating function is

$$
\sum_{m=0}^{\infty} H_{m}(z) t^{m}=\frac{1}{D(t, z)}
$$

where $D(t, z)=1+B(z) t+A(z) t^{2}, D(t, z)=1+B(z) t+A(z) t^{3}$, or $D(t, z)=1+B(z) t+A(z) t^{4}$. We notice that the root distribution of $H_{m}(z)$ will be the same if we replace 1 in the numerator by any monomial $N(t, z)$. If $N(t, z)$ is not a monomial, the root distribution will be different. The quadratic case $D(t, z)=1+B(z) t+A(z) t^{2}$ is not difficult and it is also mentioned in [13]. We present this case in Section 2 because it gives some directions to our main cases, the cubic and quartic denominators $D(t, z)$, in Sections 3 and 4 .

[^0]Our approach uses the concept of q-analogue of the discriminant (q-discriminant) introduced by Ismail [12]. The q-discriminant of a polynomial $P_{n}(x)$ of degree n and leading coefficient p is

$$
\begin{equation*}
\operatorname{Disc}_{x}(P ; q)=p^{2 n-2} q^{n(n-1) / 2} \prod_{1 \leqslant i<j \leqslant n}\left(q^{-1 / 2} x_{i}-q^{1 / 2} x_{j}\right)\left(q^{1 / 2} x_{i}-q^{-1 / 2} x_{j}\right) \tag{1}
\end{equation*}
$$

where $x_{i}, 1 \leqslant i \leqslant n$, are the roots of $P_{n}(x)$. This q-discriminant is 0 if and only if a quotient of roots x_{i} / x_{j} equals q. As $q \rightarrow 1$, this q-discriminant becomes the ordinary discriminant which is denoted by $\operatorname{Disc}_{x} P(x)$. For the study of resultants and ordinary discriminants and their various formulas, see [1,2,9,10].

We will see that the concept of q-discriminant is useful in proving connections between the root distribution of a sequence of polynomials $H_{m}(z)$ and the discriminant of the denominator of its generating function $\operatorname{Disc}_{t} D(t, z)$. We will show in the three cases mentioned above that the roots of $H_{m}(z)$ lie on a portion of a real algebraic curve (see Theorem 1 , Theorem 3, and Theorem 5). For the study of sequences of polynomials whose roots approach fixed curves, see [5-7]. Other studies of the limits of zeros of polynomials satisfying a linear homogeneous recursion whose coefficients are polynomials in z are given in [3,4]. The q-discriminant will appear as the quotient q of roots in t of $D(t, z)$. One advantage of looking at the quotients of roots is that, at least in the three cases above, although the roots of $H_{m}(z)$ lie on a curve depending on $A(z)$ and $B(z)$, the quotients of roots $t=t(z)$ of $D(t, z)$ lie on a fixed curve independent of these two polynomials. We will show that this independent curve is the unit circle in the quadratic case and two peculiar curves (see Figs. 1 and 2 in Sections 3 and 4) in the cubic and quartic cases. From computer experiments, this curve looks more complicated in the quintic case $D(z, t)=1+B(z) t+A(z) t^{5}$ (see Fig. 3 in Section 4).

As an application of these theorems, we will consider an example where $D(t, z)=1+\left(z^{2}-2 z+a\right) t+z^{2} t^{2}$ and $a \in \mathbb{R}$. We will see that the roots of $H_{m}(z)$ lie either on portions of the circle of radius \sqrt{a} or real intervals depending on the value a compared to the critical values 0 and 4. Also, the endpoints of the curves where the roots of $H_{m}(z)$ lie are roots of $\operatorname{Disc}_{t} D(t, z)$. Interestingly, the critical values 0 and 4 are roots of the double discriminant $\operatorname{Disc}_{z} \operatorname{Disc}_{t} D(t, z)=4096 a^{3}(a-4)$.

2. The quadratic denominator

In this section, we will consider the root distribution of $H_{m}(z)$ when the denominator of the generating function is $D(t, z)=1+B(z) t+A(z) t^{2}$.

Theorem 1. Let $H_{m}(z)$ be a sequence of polynomials whose generating function is

$$
\sum H_{m}(z) t^{m}=\frac{1}{1+B(z) t+A(z) t^{2}}
$$

where $A(z)$ and $B(z)$ are polynomials in z with complex coefficients. The roots of $H_{m}(z)$ which satisfy $A(z) \neq 0$ lie on the curve \mathcal{C}_{2} defined by

$$
\mathfrak{\Im} \frac{B^{2}(z)}{A(z)}=0 \quad \text { and } \quad 0 \leqslant \Re \frac{B^{2}(z)}{A(z)} \leqslant 4,
$$

and are dense there as $m \rightarrow \infty$.
Proof. Suppose z_{0} is a root of $H_{m}(z)$ which satisfies $A\left(z_{0}\right) \neq 0$. Let $t_{1}=t_{1}\left(z_{0}\right)$ and $t_{2}=t_{2}\left(z_{0}\right)$ be the roots of $D\left(t, z_{0}\right)$. If $t_{1}=t_{2}$ then $\operatorname{Disc}_{t} D\left(t, z_{0}\right)=B^{2}\left(z_{0}\right)-4 A\left(z_{0}\right)=0$. In this case z_{0} belongs to \mathcal{C}_{2}, and we only need to consider the case $t_{1} \neq t_{2}$. By partial fractions, we have

$$
\begin{align*}
\frac{1}{D\left(t, z_{0}\right)} & =\frac{1}{A\left(z_{0}\right)\left(t-t_{1}\right)\left(t-t_{2}\right)} \\
& =\frac{1}{A\left(z_{0}\right)\left(t_{1}-t_{2}\right)}\left(\frac{1}{t-t_{1}}-\frac{1}{t-t_{2}}\right) \\
& =\frac{1}{A\left(z_{0}\right)} \sum_{m=0}^{\infty} \frac{t_{1}^{m+1}-t_{2}^{m+1}}{\left(t_{1}-t_{2}\right) t_{1}^{m+1} t_{2}^{m+1}} t^{n} . \tag{2}
\end{align*}
$$

Thus if we let $t_{1}=q t_{2}$ then q is an $(m+1)$-st root of unity and $q \neq 1$. By the definition of q-discriminant in (1), q is a root of $\operatorname{Disc}_{t}\left(D\left(t, z_{0}\right) ; q\right)$ which equals

$$
q\left(B^{2}\left(z_{0}\right)-\left(q+q^{-1}+2\right) A\left(z_{0}\right)\right)
$$

This implies that

$$
\frac{B^{2}\left(z_{0}\right)}{A\left(z_{0}\right)}=q+q^{-1}+2
$$

Thus $z_{0} \in \mathcal{C}_{2}$ since q is an ($m+1$)-th root of unity.

https://daneshyari.com/en/article/6418770

Download Persian Version:
https://daneshyari.com/article/6418770

Daneshyari.com

[^0]: E-mail address: ktran@truman.edu.
 ${ }^{1}$ The author acknowledges support from NSF grant DMS-0838434 "EMSW21MCTP: Research Experience for Graduate Students" from the University of Illinois at Urbana-Champaign.

