

Contents lists available at ScienceDirect Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

A note on moment integrals and some applications

Jian Cao

Department of Mathematics, Hangzhou Normal University, Hangzhou City, Zhejiang Province, 310036, PR China

A R T I C L E I N F O

Article history: Received 28 June 2012 Available online 27 August 2013 Submitted by M. Schlosser

Keywords: Moment integral Sears's transformation Rogers–Szegö polynomial Generating functions Kalnins–Miller transformation

ABSTRACT

In this paper, two moment integrals are given by the method of transformation. In addition, generalizations of Sears's transformation are obtained by moment integrals. Moreover, certain *q*-Mehler formulas for Rogers–Szegö polynomials are gained by moment integrals. Besides, an open problem of trilinear generating function is deduced by moment integrals. At last, generalizations of U(n + 1) type Kalnins–Miller transformation are achieved by moment integrals.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we follow the notations and terminology in [13] and suppose that 0 < q < 1. The *q*-series and its compact factorials are defined respectively by

$$(a;q)_0 = 1, \qquad (a;q)_n = \prod_{k=0}^{n-1} (1 - aq^k), \qquad (a;q)_\infty = \prod_{k=0}^{\infty} (1 - aq^k)$$
(1.1)

and $(a_1, a_2, ..., a_m; q)_n = (a_1; q)_n (a_2; q)_n \cdots (a_m; q)_n$, where *m* is a positive integer and *n* is a nonnegative integer or ∞ . In the context, convergence of basic hypergeometric series is no issue at all because they are the terminating *q*-series.

The basic hypergeometric series $_r\phi_s$ [13, Eq. (1.2.22)] is given by

$${}_{r}\phi_{s}\begin{bmatrix}a_{1},\ldots,a_{r}\\b_{1},\ldots,b_{s};q,z\end{bmatrix} = \sum_{n=0}^{\infty} \frac{(a_{1},a_{2},\ldots,a_{r};q)_{n}}{(q,b_{1},\ldots,b_{s};q)_{n}} z^{n} [(-1)^{n} q^{n(n-1)/2}]^{s+1-r},$$
(1.2)

which is convergent for either |q| < 1 and $|z| < \infty$ when $r \leq s$ or |q| < 1 and |z| < 1 when r = s + 1, provided that no zero appears in the denominator.

The Rogers-Szegö polynomials [25,28]

$$h_n(x|q) = \sum_{k=0}^n {n \brack k} x^k \text{ and } g_n(x|q) = \sum_{k=0}^n {n \brack k} q^{k(k-n)} x^k = h_n(x|q^{-1})$$
(1.3)

are closely related to the continuous *q*-Hermite polynomials via $H_n(\cos \theta | q) = e^{-in\theta}h_n(e^{2i\theta}|q)$, which play important roles in the theory of orthogonal polynomials.

CrossMark

E-mail addresses: 21caojian@gmail.com, 21caojian@163.com.

⁰⁰²²⁻²⁴⁷X/\$ – see front matter @ 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jmaa.2013.08.032

Al-Salam and Carlitz [1] defined the following moment of two discrete distribution $d\alpha^{(a)}(x)$ and $d\beta^{(a)}(x)$ by Rogers–Szegö polynomials

$$\int_{-\infty}^{\infty} x^n \, \mathrm{d}\alpha^{(a)}(x) = h_n(a|q), \qquad \int_{-\infty}^{\infty} x^n \, \mathrm{d}\beta^{(a)}(x) = g_n(a|q), \tag{1.4}$$

where $\alpha^{(a)}(x)$ is a step function whose jumps occur at the points q^k and aq^k for $k \in \mathbb{N}$, while the jumps of $\beta^{(a)}(x)$ occur at the points q^{-k} for $k \in \mathbb{N}$. These jumps are given by, see [14] for the precise result,

$$d\alpha^{(a)}(q^k) = \frac{q^k}{(a;q)_{\infty}(q,q/a;q)_k}, \qquad d\alpha^{(a)}(aq^k) = \frac{q^k}{(1/a;q)_{\infty}(q,aq;q)_k}, \qquad d\beta^{(a)}(q^{-k}) = \frac{a^k q^{k^2}(aq^{k+1};q)_{\infty}}{(q;q)_k}.$$
 (1.5)

For more information about moment integral, please refer to [1,17].

Liu [21, Eq. (4.20)] utilized the technique of partial fraction to gain the following bivariate Rogers–Szegö polynomials $h_n(a, b|q)$

$$h_n(a,b|q) = \frac{a^n}{(b/a;q)_\infty} \sum_{k=0}^\infty \frac{q^{(n+1)k}}{(q,aq/b;q)_k} + \frac{b^n}{(a/b;q)_\infty} \sum_{k=0}^\infty \frac{q^{(n+1)k}}{(q,qb/a;q)_k}.$$
(1.6)

In this way, it's natural to define the generalized discrete probability measure $\alpha^{(a,b)}$ and $\beta^{(a,b)}$ by

$$\begin{split} d\alpha^{(a,b)}(aq^k) &= \frac{q^k}{(b/a;q)_{\infty}(q,aq/b;q)_k}, \qquad d\alpha^{(a,b)}(bq^k) = \frac{q^k}{(a/b;q)_{\infty}(q,qb/a;q)_k}, \\ d\beta^{(a,b)}(q^{-k}) &= \frac{a^k b^{-k} q^{k^2} (aq^{k+1}/b;q)_{\infty}}{(q;q)_k}, \end{split}$$

where

$$h_n(a,b|q) = \int_{-\infty}^{\infty} x^n \, \mathrm{d}\alpha^{(a,b)}(x) = \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} a^{n-k} b^k, \qquad g_n(a,b|q) = \int_{-\infty}^{\infty} x^n \, \mathrm{d}\beta^{(a,b)}(x) = \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} q^{k(k-n)} a^{n-k} b^k \tag{1.7}$$

and [5, Eq. (3.6) and p. 54]

 ∞

$$\int_{-\infty}^{\infty} \frac{1}{(ax, bx; q)_{\infty}} d\alpha^{(s,t)}(x) = \frac{(abst; q)_{\infty}}{(as, at, bs, bt; q)_{\infty}}, \qquad \int_{-\infty}^{\infty} (ax, bx; q)_{\infty} d\beta^{(s,t)}(x) = \frac{(as, at, bs, bt; q)_{\infty}}{(abst/q; q)_{\infty}}.$$
(1.8)

The method of moment integral shows that it is an effective way to solve related problems. For more information, please refer to [2,1,14,15,18].

In this paper, we give the following two moment integrals.

Theorem 1. *For* $m, n \in \mathbb{N}$ *and* $\max\{|as|, |at|, |bs|, |bt|\} < 1$, we have

$$\int_{-\infty}^{\infty} \frac{P_n(w,c)P_m(w,d)}{(aw,bw;q)_{\infty}} d\alpha^{(s,t)}(w) = \frac{(ac;q)_n(bd;q)_m(abst;q)_{\infty}}{a^n b^m(as,at,bs,bt;q)_{\infty}} \sum_{k=0}^n \frac{(q^{-n},as,at;q)_k q^k}{(q,ac,abst;q)_k} {}_3\phi_2 \left[\begin{array}{c} q^{-m},bs,bt\\bd,abstq^k;q,q \end{array} \right],$$
(1.9)

where polynomial $P_n(a, b) = (a - b)(a - bq) \cdots (a - bq^{n-1})$.

Theorem 2. For $m, n \in \mathbb{N}$ and |abst/q| < 1, we have

$$\int_{-\infty} P_{n}(c, w) P_{m}(d, w)(aw, bw; q)_{\infty} d\beta^{(s,t)}(w) = \frac{c^{n}d^{m}(q/(ac); q)_{n}(q/(bd); q)_{m}(as, at, bs, bt; q)_{\infty}}{(abst/q; q)_{\infty}} \times \sum_{k=0}^{n} \frac{(q^{-n}, q/(as), q/(at); q)_{k}}{(q, q/(ac), q^{2}/(abst))_{k}} \left(\frac{q^{n+1}}{bc}\right)^{k} {}_{3}\phi_{2} \left[\begin{array}{c} q^{-m}, q/(bs), q/(bt) \\ q/(bd), q^{2+k}/(abst) \end{array}; q, \frac{q^{1+m+k}}{ad} \right].$$
(1.10)

Download English Version:

https://daneshyari.com/en/article/6418775

Download Persian Version:

https://daneshyari.com/article/6418775

Daneshyari.com