A note on moment integrals and some applications

Jian Cao

Department of Mathematics, Hangzhou Normal University, Hangzhou City, Zhejiang Province, 310036, PR China

A R T I C L E I N F O

Article history:
Received 28 June 2012
Available online 27 August 2013
Submitted by M. Schlosser

Keywords:

Moment integral
Sears's transformation
Rogers-Szegö polynomial
Generating functions
Kalnins-Miller transformation

Abstract

In this paper, two moment integrals are given by the method of transformation. In addition, generalizations of Sears's transformation are obtained by moment integrals. Moreover, certain q-Mehler formulas for Rogers-Szegö polynomials are gained by moment integrals. Besides, an open problem of trilinear generating function is deduced by moment integrals. At last, generalizations of $U(n+1)$ type Kalnins-Miller transformation are achieved by moment integrals.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we follow the notations and terminology in [13] and suppose that $0<q<1$. The q-series and its compact factorials are defined respectively by

$$
\begin{equation*}
(a ; q)_{0}=1, \quad(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), \quad(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right) \tag{1.1}
\end{equation*}
$$

and $\left(a_{1}, a_{2}, \ldots, a_{m} ; q\right)_{n}=\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \cdots\left(a_{m} ; q\right)_{n}$, where m is a positive integer and n is a nonnegative integer or ∞. In the context, convergence of basic hypergeometric series is no issue at all because they are the terminating q-series.

The basic hypergeometric series ${ }_{r} \phi_{S}$ [13, Eq. (1.2.22)] is given by

$$
{ }_{r} \phi_{s}\left[\begin{array}{l}
a_{1}, \ldots, a_{r} \tag{1.2}\\
b_{1}, \ldots, b_{s}
\end{array} ; q, z\right]=\sum_{n=0}^{\infty} \frac{\left(a_{1}, a_{2}, \ldots, a_{r} ; q\right)_{n}}{\left(q, b_{1}, \ldots, b_{s} ; q\right)_{n}} z^{n}\left[(-1)^{n} q^{n(n-1) / 2}\right]^{s+1-r}
$$

which is convergent for either $|q|<1$ and $|z|<\infty$ when $r \leqslant s$ or $|q|<1$ and $|z|<1$ when $r=s+1$, provided that no zero appears in the denominator.

The Rogers-Szegö polynomials [25,28]

$$
h_{n}(x \mid q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{1.3}\\
k
\end{array}\right] x^{k} \quad \text { and } \quad g_{n}(x \mid q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] q^{k(k-n)} x^{k}=h_{n}\left(x \mid q^{-1}\right)
$$

are closely related to the continuous q-Hermite polynomials via $H_{n}(\cos \theta \mid q)=e^{-i n \theta} h_{n}\left(e^{2 i \theta} \mid q\right)$, which play important roles in the theory of orthogonal polynomials.

[^0]Al-Salam and Carlitz [1] defined the following moment of two discrete distribution $\mathrm{d} \alpha^{(a)}(x)$ and $\mathrm{d} \beta^{(a)}(x)$ by Rogers-Szegö polynomials

$$
\begin{equation*}
\int_{-\infty}^{\infty} x^{n} \mathrm{~d} \alpha^{(a)}(x)=h_{n}(a \mid q), \quad \int_{-\infty}^{\infty} x^{n} \mathrm{~d} \beta^{(a)}(x)=g_{n}(a \mid q) \tag{1.4}
\end{equation*}
$$

where $\alpha^{(a)}(x)$ is a step function whose jumps occur at the points q^{k} and $a q^{k}$ for $k \in \mathbb{N}$, while the jumps of $\beta^{(a)}(x)$ occur at the points q^{-k} for $k \in \mathbb{N}$. These jumps are given by, see [14] for the precise result,

$$
\begin{equation*}
\mathrm{d} \alpha^{(a)}\left(q^{k}\right)=\frac{q^{k}}{(a ; q)_{\infty}(q, q / a ; q)_{k}}, \quad \mathrm{~d} \alpha^{(a)}\left(a q^{k}\right)=\frac{q^{k}}{(1 / a ; q)_{\infty}(q, a q ; q)_{k}}, \quad \mathrm{~d} \beta^{(a)}\left(q^{-k}\right)=\frac{a^{k} q^{k^{2}}\left(a q^{k+1} ; q\right)_{\infty}}{(q ; q)_{k}} \tag{1.5}
\end{equation*}
$$

For more information about moment integral, please refer to [1,17].
Liu [21, Eq. (4.20)] utilized the technique of partial fraction to gain the following bivariate Rogers-Szegö polynomials $h_{n}(a, b \mid q)$

$$
\begin{equation*}
h_{n}(a, b \mid q)=\frac{a^{n}}{(b / a ; q)_{\infty}} \sum_{k=0}^{\infty} \frac{q^{(n+1) k}}{(q, a q / b ; q)_{k}}+\frac{b^{n}}{(a / b ; q)_{\infty}} \sum_{k=0}^{\infty} \frac{q^{(n+1) k}}{(q, q b / a ; q)_{k}} \tag{1.6}
\end{equation*}
$$

In this way, it's natural to define the generalized discrete probability measure $\alpha^{(a, b)}$ and $\beta^{(a, b)}$ by

$$
\begin{aligned}
\mathrm{d} \alpha^{(a, b)}\left(a q^{k}\right) & =\frac{q^{k}}{(b / a ; q)_{\infty}(q, a q / b ; q)_{k}}, \quad \mathrm{~d} \alpha^{(a, b)}\left(b q^{k}\right)=\frac{q^{k}}{(a / b ; q)_{\infty}(q, q b / a ; q)_{k}} \\
\mathrm{~d} \beta^{(a, b)}\left(q^{-k}\right) & =\frac{a^{k} b^{-k} q^{k^{2}}\left(a q^{k+1} / b ; q\right)_{\infty}}{(q ; q)_{k}}
\end{aligned}
$$

where

$$
h_{n}(a, b \mid q)=\int_{-\infty}^{\infty} x^{n} \mathrm{~d} \alpha^{(a, b)}(x)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{1.7}\\
k
\end{array}\right] a^{n-k} b^{k}, \quad g_{n}(a, b \mid q)=\int_{-\infty}^{\infty} x^{n} \mathrm{~d} \beta^{(a, b)}(x)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] q^{k(k-n)} a^{n-k} b^{k}
$$

and [5, Eq. (3.6) and p. 54]

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{1}{(a x, b x ; q)_{\infty}} \mathrm{d} \alpha^{(s, t)}(x)=\frac{(a b s t ; q)_{\infty}}{(a s, a t, b s, b t ; q)_{\infty}}, \quad \int_{-\infty}^{\infty}(a x, b x ; q)_{\infty} \mathrm{d} \beta^{(s, t)}(x)=\frac{(a s, a t, b s, b t ; q)_{\infty}}{(a b s t / q ; q)_{\infty}} \tag{1.8}
\end{equation*}
$$

The method of moment integral shows that it is an effective way to solve related problems. For more information, please refer to [2,1,14,15,18].

In this paper, we give the following two moment integrals.
Theorem 1. For $m, n \in \mathbb{N}$ and $\max \{|a s|,|a t|,|b s|,|b t|\}<1$, we have

$$
\begin{align*}
& \int_{-\infty}^{\infty} \frac{P_{n}(w, c) P_{m}(w, d)}{(a w, b w ; q)_{\infty}} \mathrm{d} \alpha^{(s, t)}(w) \\
& \quad=\frac{(a c ; q)_{n}(b d ; q)_{m}(a b s t ; q)_{\infty}}{a^{n} b^{m}(a s, a t, b s, b t ; q)_{\infty}} \sum_{k=0}^{n} \frac{\left(q^{-n}, a s, a t ; q\right)_{k} q^{k}}{(q, a c, a b s t ; q)_{k}} 3 \phi_{2}\left[\begin{array}{c}
q^{-m}, b s, b t \\
b d, a b s t q^{k}
\end{array} q, q\right] \tag{1.9}
\end{align*}
$$

where polynomial $P_{n}(a, b)=(a-b)(a-b q) \cdots\left(a-b q^{n-1}\right)$.
Theorem 2. For $m, n \in \mathbb{N}$ and $|a b s t / q|<1$, we have

$$
\begin{align*}
& \int_{-\infty}^{\infty} P_{n}(c, w) P_{m}(d, w)(a w, b w ; q)_{\infty} \mathrm{d} \beta^{(s, t)}(w) \\
& \quad=\frac{c^{n} d^{m}(q /(a c) ; q)_{n}(q /(b d) ; q)_{m}(a s, a t, b s, b t ; q)_{\infty}}{(a b s t / q ; q)_{\infty}} \\
& \quad \times \sum_{k=0}^{n} \frac{\left(q^{-n}, q /(a s), q /(a t) ; q\right)_{k}}{\left(q, q /(a c), q^{2} /(a b s t)\right)_{k}}\left(\frac{q^{n+1}}{b c}\right)^{k} 3 \phi_{2}\left[\begin{array}{c}
q^{-m}, q /(b s), q /(b t) \\
q /(b d), q^{2+k} /(a b s t)
\end{array} q, \frac{q^{1+m+k}}{a d}\right] \tag{1.10}
\end{align*}
$$

https://daneshyari.com/en/article/6418775

Download Persian Version:

https://daneshyari.com/article/6418775

Daneshyari.com

[^0]: E-mail addresses: 21caojian@gmail.com, 21caojian@163.com.

