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We study the two-stream counter-flow heat exchanger equation with time-varying fluid
velocities. Formulating it into a time-varying boundary control system, a representation
formula of the solution is obtained.
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1. Introduction

Heat exchangers are widely used in a large variety of industrial processes and engineering experiments to facilitate the
transfer of heat [10,11] between hot and cold fluids or gases. Among which parallel-flow heat exchangers and counter-flow
heat exchangers are most common. Topics related with them have received much attention in recent years, see for instance
[1,2,6,7,9,10,14,15,21]. In this paper, we are concerned with the following two-stream counter-flow heat exchanger equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂z1

∂t
(x, t) = −v1(t)

∂z1

∂x
(x, t) + h1

[
z2(x, t) − z1(x, t)

]
,

∂z2

∂t
(x, t) = v2(t)

∂z2

∂x
(x, t) + h2

[
z1(x, t) − z2(x, t)

]
, t > 0, 0 < x < l,

z1(0, t) = u1(t), z2(l, t) = u2(t), t � 0,

z1(x,0) = z10(x), z2(x,0) = z20(x), 0 < x < l.

(1.1)

Here z1(x, t) and z2(x, t) denote the temperatures of the hot and cold fluids at time t and position x, respectively; u1(t)
and u2(t) indicate the boundary inputs; v1(t) and v2(t) are positive functions reflecting the velocities of the two fluids at
time t; h1,h2 are positive thermal constants and l stands for the length of the heat exchanger. See Fig. 1 for the sketch of
the heat exchanger. The above system has been studied by Grabowski [6] and its derivation was given in [6, Appendix A].
But, instead of (1.1) itself, what Grabowski actually studied is its variation (see (6) in [6]) corresponding to the equilibrium
state

v1(t) ≡ v1∞ > 0, v2(t) ≡ v2∞ > 0,
∂z1

∂t
= ∂z2

∂t
= 0.
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Fig. 1. Sketch of the two-stream counter-flow heat exchanger of unit length. The fluids enter the exchanger from opposite ends.

This leads to a standard autonomous Cauchy system in the state space Z = L2(0, l) × L2(0, l) where the coefficients are no
longer time-varying. The control operator is bounded and the unbounded observation operator is defined by the output
function

y(t) = x2(0, t),

i.e., temperature observation of the cold fluid at x = 0. It was shown that the system is exponentially stable [6, Lemma 1]
and that the observation functional is infinite-time admissible [6, Lemma 2]. In addition, using a circle criterion coming from
the Leray–Schauder’s fixed point theorem, the author also investigated the closed-loop system with nonlinear feedback u(t) =
− f [y(t)], see [6, Theorem 2] for details.

Whereas many numerical methods have been developed (see e.g. [10, Sect. 3]), some researchers aim at finding solution
formulas of heat exchanger equations [1]. This is also the main goal of the present paper. Note that in the case when
v1(t) and v2(t) are time-independent, following discussion in [9] and formulating (1.1) into a boundary control system [4,20],
a solution formula can be obtained easily.

The general case gives rise to a time-varying boundary control system and it is more complicated. First of all, instead
of strongly continuous semigroups, we have to deal with evolution families, see for instance [18], [13, Definition 5.5.3] and
[5, Definition VI.9.2]. As compared with the semigroup case, in general, we have no explicit expressions for the evolution
families which adds many technical difficulties. However, as we will see, the underlying evolution family of (1.1) has an
explicit expression and what is more, there is a natural generalization of [4, Theorem 3.3.4] to the time-varying case from
which a representation formula of the solution follows.

The rest of this paper is organized as follows. In Section 2, we formulate (1.1) into a time-varying boundary control
system. In Section 3, a special type of time-varying boundary control systems including the one associated with (1.1) is
studied. A representation formula is given for such systems. Section 4 is devoted to conclusions.

2. A time-varying boundary control system

In this section, we formulate (1.1) into a time-varying boundary control system. First, we introduce the state space

Z := L2(0, l) × L2(0, l)

and the input space U := R×R. Next, we define the operator

D :=
[− d

dx 0

0 d
dx

]
(2.1)

with domain

D(D) :=
{[

f1
f2

]
∈ H1(0, l) × H1(0, l): f1(0) = f2(l) = 0

}
. (2.2)

Denote Sr(t) and Sl(t) the right-shift semigroup and left-shift semigroup on L2(0, l), namely, for each f ∈ L2(0, l),

(
Sr(t) f

)
(x) =

{
f (x − t), x � t,
0, x < t,

(
Sl(t) f

)
(x) =

{
f (x + t), x + t � l,
0, x + t > l.

Then it follows that D is the generator of the C0-semigroup

S(t) =
[

Sr(t) 0
0 Sl(t)

]
. (2.3)

By the way, it is clear that both Sr(t) and Sl(t) are nilpotent, precisely, Sr(t) = Sl(t) = 0 for all t > l which implies S(t) is
also nilpotent and S(t) = 0 for all t > l. Further, writing

H :=
[−h1 h1

h2 −h2

]
, V (t) :=

[
v1(t) o

0 v2(t)

]
(2.4)
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