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a b s t r a c t

In this paper, a formula for the determinant of heptadiagonal symmetric Toeplitz
matrices is obtained. This formula and rational functions are used for studying eigenvalue
localization. This work is done by Chebyshev polynomials of the first, second, third and
fourth kinds.
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1. Introduction

Toeplitz matrices are frequently used in many branches of science and engineering. Banded Toeplitz matrices are an
important and large subclass of Toeplitz matrices; see [1,8].

Let f be a Laurent polynomial of the form

f (t) = a + bt + bt−1
+ ct2 + ct−2

+ dt3 + dt−3 (1)
so

f

eix


= a + 2b cos x + 2c cos 2x + 2d cos 3x a, b, c, d ∈ R, d ≠ 0. (2)

Then×n Toeplitzmatrix Tn(f ) generated by the function f in L1 on the complex unit circle T is definedby Tn(f ) =

fj−k

1≤j,k≤n

where fk is the kth Fourier coefficient of f ,

fk =
1
2π

 2π

0
f

eix

e−ikxdx. (3)

Set

Pn = Tn(f ) =



a b c d
b a b c d
c b a b c d
d c b a b c d

. . .
. . .

. . .
. . .

. . .
. . .

. . .

d c b a b c d
d c b a b c

d c b a b
d c b a


∈ Mn (R) . (4)
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In [4], Elouafi introduced a process for finding eigenvalues of pentadiagonal symmetric Toeplitz matrices. We generalized
this process for finding eigenvalues of heptadiagonal symmetric Toeplitz matrices.

We will describe the eigenvalues of the matrix Tn(f ) as the zeros of rational functions whose poles and residues are
determined explicitly.

For this work we use Chebyshev polynomials of the first, second, third and fourth kinds. Chebyshev polynomials will be
denoted by Tn,Un, Vn andWn respectively [7].

2. Determinant of the matrix Pn

Let ξ denote any root of dt6 + ct5 + bt4 + at3 + bt2 + ct + d, since our polynomial is symmetric so 1
ξ
is another root. Let

α =
1
2 (ξ + 1/ξ) then we have:

8dα3
+ 4cα2

+ 2 (b − 3d) α + (a − 2c) = 0. (5)
So Eq. (5) has the three complex roots x, y, z such that

x + y + z = −
c
2d

, xy + yz + xz =
b − 3d
4d

, xyz = −
a − 2c
8d

(6)

see [6], assume that these roots are distinct and ξ ≠ ±1.
Now we begin by recalling some basic properties of the Chebyshev polynomials Tn,Un, Vn and Wn:

T0(t) = 1, T1(t) = t, Tn (cos θ) = cos nθ, with roots: xk = cos


k −

1
2


π

n
, (7)

U0(t) = 1, U1(t) = 2t, Un (cos θ) =
sin (n + 1) θ

sin θ
, with roots: xk = cos

kπ
n + 1

,

V0(t) = 1, V1(t) = 2t − 1, Vn (cos θ) =
cos


n +

1
2


θ

cos 1
2θ

, with roots: xk = cos


k −

1
2


π

n +
1
2

,

W0(t) = 1, W1(t) = 2t + 1, Wn (cos θ) =
sin

n +

1
2


θ

sin 1
2θ

, with roots: xk = cos
kπ

n +
1
2

,

with k = 1, . . . , n.
All Chebyshev polynomials, amongst which the Ui’s satisfy the three-term recurrence relation:

Ui+1(t) = 2tUi(t) − Ui−1(t) for i = 1, 2, . . . (8)
and we have:

Ui


1
2


ξ +

1
ξ


=

ξ i+1
−

1
ξ i+1

ξ −
1
ξ

, ξ = eiθ . (9)

Lemma 1. Let ξ denote any root of the polynomial dt6 + ct5 +bt4 +at3 +bt2 + ct +d and assume d ≠ 0. Set α =
1
2 (ξ + 1/ξ)

then

Pn


U0 (α)
U1 (α)
U2 (α)

...
Un−1 (α)

 =



dU1 (α) + c
d
0
...
0

−dUn (α)
−dUn+1 (α) − cUn (α)

−dUn+2 (α) − cUn+1 (α) − bUn (α)


and

Pn


U1 (α)
U2 (α)
U3 (α)

...
Un (α)

 =



d − b
−c
−d
0
...
0

−dUn+1 (α)
−dUn+2 (α) − cUn+1 (α)

−dUn+3 − cUn+2 (α) − bUn+1 (α)
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