Finding eigenvalues for heptadiagonal symmetric Toeplitz matrices

ARTICLE INFO

Article history:

Received 18 April 2012
Available online 8 February 2013
Submitted by Michael J. Schlosser

Keywords:

Toeplitz matrix
Determinant
Eigenvalue
Chebyshev polynomial

Abstract

In this paper, a formula for the determinant of heptadiagonal symmetric Toeplitz matrices is obtained. This formula and rational functions are used for studying eigenvalue localization. This work is done by Chebyshev polynomials of the first, second, third and fourth kinds.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Toeplitz matrices are frequently used in many branches of science and engineering. Banded Toeplitz matrices are an important and large subclass of Toeplitz matrices; see [1,8].

Let f be a Laurent polynomial of the form

$$
\begin{equation*}
f(t)=a+b t+b t^{-1}+c t^{2}+c t^{-2}+d t^{3}+d t^{-3} \tag{1}
\end{equation*}
$$

SO

$$
\begin{equation*}
f\left(e^{i x}\right)=a+2 b \cos x+2 c \cos 2 x+2 d \cos 3 x \quad a, b, c, d \in \mathbb{R}, d \neq 0 \tag{2}
\end{equation*}
$$

The $n \times n$ Toeplitz matrix $T_{n}(f)$ generated by the function f in L^{1} on the complex unit circle T is defined by $T_{n}(f)=\left(f_{j-k}\right)_{1 \leq j, k \leq n}$ where f_{k} is the k th Fourier coefficient of f,

$$
\begin{equation*}
f_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i x}\right) e^{-i k x} d x \tag{3}
\end{equation*}
$$

Set

$$
\mathbf{P}_{\mathbf{n}}=T_{n}(f)=\left(\begin{array}{lllllllll}
a & b & c & d & & & & & \tag{4}\\
b & a & b & c & d & & & & \\
c & b & a & b & c & d & & & \\
d & c & b & a & b & c & d & & \\
& \ddots & \\
& & d & c & b & a & b & c & d \\
& & & d & c & b & a & b & c \\
& & & & d & c & b & a & b \\
d & c & b & a
\end{array}\right) \in M_{n}(\mathbb{R}) .
$$

[^0]In [4], Elouafi introduced a process for finding eigenvalues of pentadiagonal symmetric Toeplitz matrices. We generalized this process for finding eigenvalues of heptadiagonal symmetric Toeplitz matrices.

We will describe the eigenvalues of the matrix $T_{n}(f)$ as the zeros of rational functions whose poles and residues are determined explicitly.

For this work we use Chebyshev polynomials of the first, second, third and fourth kinds. Chebyshev polynomials will be denoted by T_{n}, U_{n}, V_{n} and W_{n} respectively [7].

2. Determinant of the matrix P_{n}

Let ξ denote any root of $d t^{6}+c t^{5}+b t^{4}+a t^{3}+b t^{2}+c t+d$, since our polynomial is symmetric so $\frac{1}{\xi}$ is another root. Let $\alpha=\frac{1}{2}(\xi+1 / \xi)$ then we have:

$$
\begin{equation*}
8 d \alpha^{3}+4 c \alpha^{2}+2(b-3 d) \alpha+(a-2 c)=0 \tag{5}
\end{equation*}
$$

So Eq. (5) has the three complex roots x, y, z such that

$$
\begin{equation*}
x+y+z=-\frac{c}{2 d}, \quad x y+y z+x z=\frac{b-3 d}{4 d}, \quad x y z=-\frac{a-2 c}{8 d} \tag{6}
\end{equation*}
$$

see [6], assume that these roots are distinct and $\xi \neq \pm 1$.
Now we begin by recalling some basic properties of the Chebyshev polynomials T_{n}, U_{n}, V_{n} and W_{n} :

$$
\begin{array}{ll}
T_{0}(t)=1, & T_{1}(t)=t, \quad T_{n}(\cos \theta)=\cos n \theta, \quad \text { with roots: } x_{k}=\cos \frac{\left(k-\frac{1}{2}\right) \pi}{n}, \tag{7}\\
U_{0}(t)=1, & U_{1}(t)=2 t, \quad U_{n}(\cos \theta)=\frac{\sin (n+1) \theta}{\sin \theta}, \quad \text { with roots: } x_{k}=\cos \frac{k \pi}{n+1}, \\
V_{0}(t)=1, & V_{1}(t)=2 t-1, \quad V_{n}(\cos \theta)=\frac{\cos \left(n+\frac{1}{2}\right) \theta}{\cos \frac{1}{2} \theta}, \quad \text { with roots: } x_{k}=\cos \frac{\left(k-\frac{1}{2}\right) \pi}{n+\frac{1}{2}}, \\
W_{0}(t)=1, & W_{1}(t)=2 t+1, \quad W_{n}(\cos \theta)=\frac{\sin \left(n+\frac{1}{2}\right) \theta}{\sin \frac{1}{2} \theta}, \quad \text { with roots: } x_{k}=\cos \frac{k \pi}{n+\frac{1}{2}},
\end{array}
$$

with $k=1, \ldots, n$.
All Chebyshev polynomials, amongst which the U_{i} 's satisfy the three-term recurrence relation:

$$
\begin{equation*}
U_{i+1}(t)=2 t U_{i}(t)-U_{i-1}(t) \quad \text { for } i=1,2, \ldots \tag{8}
\end{equation*}
$$

and we have:

$$
\begin{equation*}
U_{i}\left(\frac{1}{2}\left(\xi+\frac{1}{\xi}\right)\right)=\frac{\xi^{i+1}-\frac{1}{\xi^{i+1}}}{\xi-\frac{1}{\xi}}, \quad \xi=e^{i \theta} \tag{9}
\end{equation*}
$$

Lemma 1. Let ξ denote any root of the polynomial $d t^{6}+c t^{5}+b t^{4}+a t^{3}+b t^{2}+c t+d$ and assume $d \neq 0$. Set $\alpha=\frac{1}{2}(\xi+1 / \xi)$ then

$$
\mathbf{P}_{n}\left(\begin{array}{c}
U_{0}(\alpha) \\
U_{1}(\alpha) \\
U_{2}(\alpha) \\
\vdots \\
U_{n-1}(\alpha)
\end{array}\right)=\left(\begin{array}{c}
d U_{1}(\alpha)+c \\
d \\
0 \\
\vdots \\
0 \\
-d U_{n}(\alpha) \\
-d U_{n+1}(\alpha)-c U_{n}(\alpha) \\
-d U_{n+2}(\alpha)-c U_{n+1}(\alpha)-b U_{n}(\alpha)
\end{array}\right)
$$

and

$$
\mathbf{P}_{n}\left(\begin{array}{c}
U_{1}(\alpha) \\
U_{2}(\alpha) \\
U_{3}(\alpha) \\
\vdots \\
U_{n}(\alpha)
\end{array}\right)=\left(\begin{array}{c}
d-b \\
-c \\
-d \\
0 \\
\vdots \\
0 \\
-d U_{n+1}(\alpha) \\
-d U_{n+2}(\alpha)-c U_{n+1}(\alpha) \\
-d U_{n+3}-c U_{n+2}(\alpha)-b U_{n+1}(\alpha)
\end{array}\right)
$$

https://daneshyari.com/en/article/6418881

Download Persian Version:

https://daneshyari.com/article/6418881

Daneshyari.com

[^0]: E-mail addresses: shamssolary@gmail.com, shamssolary@pnu.ac.ir.
 0022-247X/\$ - see front matter © 2013 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2013.02.008

