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In this paper, we establish the equivalence between the overconvergence of a Faber series
and the existence of an elongation of its partial sums, whose arithmetic means converge.
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1. Introduction

1.1. Faber polynomials

Let K be a compact, connected set in the complex plane C which is non-polar, i.e. not a singleton, and suppose that
K c

:= Ĉ \ K is connected, where Ĉ denotes the one-point compactification of C. Moreover, let φ: K c
→ {w ∈ C: |w| > ϱ}

be the unique conformal mapping satisfying φ(∞) = ∞ and limz→∞
φ(z)
z = 1. Hence, φ has the following form:

φ(z) = z + α0 +
α−1

z
+ · · · ,

and 
φ(z)

n
= zn + α

(n)
n−1z

n−1
+ · · · + α

(n)
0 +

α
(n)
−1

z
+ · · · .

The n-th Faber polynomialwith respect to K is then given by

Fn(z) := zn + α
(n)
n−1z

n−1
+ · · · + α

(n)
0 .

For every R > ϱ, the set CR := φ−1

{w ∈ C: |w| = R}


is a closed Jordan curve. We denote the inner domain of this curve

by I(CR), and the outer domain by O(CR). A Faber series

f (z) :=

∞
n=0

anFn(z) with lim sup
n→∞

|an|1/n =
1
R

and R > ϱ (1)
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converges locally uniformly in I(CR) and diverges in O(CR). Contrariwise, given a function f which is holomorphic in I(CR)
with R > ϱ, then the following representation holds:

f (z) =

∞
n=0

anFn(z) with an =
1

2π i


Cs

f (z)φ′(z)
{φ(z)}n+1

dz, ϱ < s < R.

The series converges locally uniformly in I(CR), and we have lim supn→∞ |an|1/n ≤
1
R . For further details about Faber

polynomials, we refer to [1, Section 14]. For a Faber series f as in (1), our interest is to study the partial sums {sn(z)}, i.e.

sn(z) :=

n
ν=0

aνFν(z). (2)

From the above results the following lemma is easily deduced.

Lemma 1. Let f be a Faber series as in (1) with its partial sums {sn(z)} as in (2). Then, the following properties hold.

1. The sequence {sn(z)} converges locally uniformly in I(CR).
2. For every z ∈ O(CR), we have

lim sup
n→∞

|sn(z)|1/n =
|φ(z)|

R
> 1.

In the above situation a Faber series f is called overconvergent if there exists a set S ⊆ O(CR) and an increasing sequence
{pk}, such that {spk(z)} converges in S. In S pointwise, uniform or locally uniform convergence is possible. Examples of
overconvergent Faber series are given in [2–4].

1.2. Arithmetic means

For an arbitrary sequence {sn} we denote by

σn :=
1

n + 1

n
ν=0

sν, n ∈ N,

the sequence of its arithmetic means. If {σn} converges, then {
sn
n } tends to 0, as n → ∞, and if {σn} is bounded, then {

sn
n } is

also bounded.
Moreover, for an arbitrary sequence {sn} and a sequencem = {mn} of natural numbers, we call the sequence

{s̃n}: s0, . . . , s0  
m0−times

, s1, . . . , s1  
m1−times

, . . . , sn, . . . , sn  
mn−times

, . . .

them-elongation of {sn}. Obviously, {sn} converges if and only if anym-elongation {s̃n} converges.
If we consider a Faber series as in (1), then the sequence

σn(z) =
1

n + 1

n
ν=0

sν(z)

of its arithmetic means is locally uniformly convergent in I(CR) to the value f (z) and diverges in every point z ∈ O(CR).
However, we shall show in this paper that there is a connection between overconvergence of the considered Faber series on
a set in O(CR) and the existence of anm-elongation of its partial sums, whose arithmetic means converge on the same set.

2. Statement and proof of the main result

The following theorem is our main result.

Theorem 2. Let f be a Faber series as in (1) with its partial sums {sn(z)} as in (2). For a set S ⊆ O(CR) the following assertions
are equivalent.

(i) The Faber series f is overconvergent in S, i.e. a subsequence {spk(z)} converges in S.
(ii) There exists an m-elongation of the partial sums sn(z), whose arithmetic means converge in S.

The convergences in (i) and (ii) are of the same kind (pointwise, uniformly, locally uniformly, or almost everywhere) and the limits
coincide.
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