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a b s t r a c t

In this paper, we analyze the weak error of a semi-discretization in time by the linear
implicit Euler method for semilinear stochastic partial differential equations (SPDEs) with
additive noise. The main result reveals how the weak order depends on the regularity
of noise and that the order of weak convergence is twice that of strong convergence. In
particular, the linear implicit Euler method for SPDEs driven by trace class noise achieves
an almost optimal order 1 − ϵ for arbitrarily small ϵ > 0.
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1. Introduction

This article deals with weak approximation order of numerical method for semilinear stochastic partial differential
equations with additive noise

dX(t) =


AX(t)+ F(X(t))


dt + dWQ (t), 0 ≤ t ≤ T ,

X(0) = x ∈ H
(1.1)

in a real separable Hilbert space H with inner product ⟨·, ·⟩ and norm ∥ · ∥ = ⟨·, ·⟩
1
2 . Here −A : D(−A) ⊂ H → H is a

linear, self-adjoint, positive definite operator, whose domain D(−A) is dense in H and compactly embedded in H . Further
we assume that A generates an analytic semigroup E(t) = etA, t ≥ 0, and that F : H → H satisfies the linear growth
condition and is twice continuously Fréchet differentiable with bounded derivatives up to order 2. More accurately, there
exists a constant L such that for ∀y ∈ H

∥F(y)∥ ≤ L(∥y∥ + 1), (1.2)F ′(y)


L(H) ≤ L, and
F ′′(y)


L(H×H;H) ≤ L, (1.3)

where the operator norms are defined in Section 2. Moreover, assume that (Ω,F , P) is a probability space with a normal
filtration {Ft}0≤t≤T and letQ be a bounded, linear, self-adjoint, positive semi-definite operator inH , with eigenvalues qi > 0

✩ This work was supported by NSF of China (No. 11171352) and the Postdoctoral Foundation of Central South University. The first author would like to
express his deep gratitude to Prof. P.E. Kloeden and Dr. A. Jentzen for their kind help and useful discussions during the author’s stay in Goethe University
of Frankfurt am Main. Great thanks also go to China Scholarship Council (CSC) for the financial support, which made the discussions possible.
∗ Corresponding author at: School of Mathematics and Statistics, Central South University, Changsha 410075, Hunan, China.

E-mail address: x.j.wang7@gmail.com (X. Wang).

0022-247X/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2012.08.038

http://dx.doi.org/10.1016/j.jmaa.2012.08.038
http://www.elsevier.com/locate/jmaa
http://www.elsevier.com/locate/jmaa
mailto:x.j.wang7@gmail.com
http://dx.doi.org/10.1016/j.jmaa.2012.08.038


152 X. Wang, S. Gan / J. Math. Anal. Appl. 398 (2013) 151–169

and corresponding eigenfunctions ei for i ∈ N. Then it is a classical result that there exists exactly one element Q
1
2 ∈ L(H)

nonnegative and self-adjoint such that Q = Q
1
2 ◦ Q

1
2 . Let {WQ

}t≥0 be a standard Wiener process with respect to {Ft}0≤t≤T
and with the covariance operator Q . According to [1, Chapter 4],WQ can be represented as

WQ (t) :=


i∈N

√
qiβi(t)ei, t ∈ [0, T ], (1.4)

where {βi(t)}, i ∈ {n ∈ N, qn > 0} for t ∈ [0, T ] are independent real-valued Brownian motions on a probability space
(Ω,F , P). To guarantee the existence of the mild solution of (1.1) in H , we further assume that for some positive constant
C (−A)

β−1
2 Q

1
2


L2(H)

=

Q 1
2 (−A)

β−1
2


L2(H)

≤ C, for some β ∈ (0, 1]. (1.5)

Here the norm of Hilbert–Schmidt operator space ∥ ·∥L2(H) is defined in the next section. Under the assumptions above, one
can easily verify that the SPDE (1.1) has a unique mild solution X : [0, T ] ×Ω → H with continuous sample path, given by

X(t) = E(t)x +

 t

0
E(t − s)F(X(s)) ds +

 t

0
E(t − s)dWQ (s), P-a.s., (1.6)

which satisfies

E∥X(t)∥2 < ∞, t ∈ [0, T ]. (1.7)

Note that the condition (1.5) is used to ensure that the stochastic integral in (1.6) is well-defined in H (see [2, Theorem 3.1]).
Now we approximate Eq. (1.1) in time by the linear implicit Euler method. Given 2 ≤ M ∈ N and stepsize 1t =

T
M , the

linear implicit Euler method is given by Y0 = x and for m = 1, 2, . . . ,M

Ym = E1tYm−1 +1tE1tF(Ym−1)+ E1t1WQ
m−1, (1.8)

where for simplicity of notation we write E1t := (I − 1tA)−1 and 1WQ
m−1 := WQ (tm) − WQ (tm−1). We remark that the

noise term in (1.8) is also well-defined in H due to (1.5) and (2.11).
For a numerical scheme, various notions of convergence can be taken into account. Two most important notions

among them are strong convergence and weak convergence, which are concerned with the pathwise approximation and
approximation of the law, respectively. For finite dimensional stochastic differential equations, both strong and weak
convergence have been thoroughly investigated, see, e.g., [3,4] and references therein. Comparedwith the finite dimensional
case, numerics of stochastic differential equations in infinite dimensions are muchmore complicated due to the presence of
unbounded operator A. In the past decade, plenty of work has been done on the strong convergence of numerical methods
for SPDEs ([2,5–16] and see the review article [17] for more references). On the contrary, just a few literature [18–23]
focus on the weak convergence, which is sometimes more interesting in many applications. This work will investigate
weak convergence order of semi-discretization in time by the method (1.8) applied to (1.1) and weak convergence of full
discretization will be our future work. To be more precise, the aim of this paper is to measure the weak error

|Eϕ(X(T ))− Eϕ(YM)|, as1t → 0,

where ϕ is a suitable class of functions. Similarly to the existing work [18–21,23] on weak convergence, we choose the test
function space C2

b (H; R), namely, the set of all real-valued, twice Fréchet differentiable function ϕ whose first and second
derivatives are continuous and bounded. Our main result (Theorem 2.1) covers equations with both space–timewhite noise
and trace class noise. The result indicates that the weak order depends heavily on the regularity of the noise. Particularly,
in the case of trace class noise, i.e., β = 1 and Tr(Q ) < ∞, we can almost get the optimal order one for the linear implicit
Euler method. Moreover, the result shows that in all cases the rate of weak convergence is twice that of strong convergence.

We mention that, for semilinear SPDEs (1.1) with additive noise, whereWQ is a standardWiener process including both
space–time white noise (Q = I) and trace class noise (Tr(Q ) < ∞), many authors [9–11] have studied the strong conver-
gence of various numerical schemes. But for weak convergence of numerical methods, only linear stochastic evolution prob-
lems with such general additive noise have been considered in [18,20,21]. This article will fill the gap and focus on the weak
convergence of the scheme (1.8) for the semilinear SPDEs with general additive noise. For a linear equation with additive
noise, whose solution can be written down explicitly, the authors of [18,21] get rid of the term involving the unbounded
operator A and further use a change of variable to simplify the proof. But for nonlinear equation (1.1), whose solution cannot
be written down explicitly, one cannot generalize the ideas mentioned above since the operator A considered in our work
does not generate a group (see the introduction in [19,24]). To address this problem, we directly invoke the Kolmogorov
equation and Itô’s formula to decompose the weak error into several terms. Further, these terms are estimated by using
Malliavin calculus, the Taylor formula in Banach space and some regularity results. It is worthwhile to point out that we
follow some ideas in [19] to decompose the weak error and to estimate the resulting terms. In [19], only space–time white
noise (Q = I) was considered. Due to the presence of Q

1
2 or Q , however, new techniques are developed here to estimate

the terms involving Q
1
2 or Q (see, for example, the estimate of a3k in Section 4.2 and the estimate of IV in Section 4.4). More-

over, better regularity results (Lemma 3.3) are achieved and more careful calculations (see, e.g., estimate of I in Section 4.1)



Download	English	Version:

https://daneshyari.com/en/article/6418920

Download	Persian	Version:

https://daneshyari.com/article/6418920

Daneshyari.com

https://daneshyari.com/en/article/6418920
https://daneshyari.com/article/6418920
https://daneshyari.com/

