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a b s t r a c t

We study a ratio-dependent reaction–diffusion system incorporating one prey and two
competing predator species under homogeneous Neumann boundary conditions. In this
paper, we examine the global attractor and persistence of the system, which characterize
the long time behavior of the time-dependent solution, and the stability of all non-negative
equilibria of the system. We classify the relations between two competing predators into
four categories via domination of one predator over another and weak/strong competition
states. These competition states will be the criteria which influence the outcomes of the
system. The results include total extinction, competitive exclusion, behavior of a predator
driving the extinction of another predator and its prey, behavior of a predator saving its
competing predator and prey on the verge of extinction.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study the following reaction–diffusion system with a ratio-dependent functional response:
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= 0 on (0, ∞) × ∂Ω ,

u(0, x) = u0(x), v(0, x) = v0(x), w(0, x) = w0(x) in Ω ,

(MP)

whereΩ ⊆ RN is a bounded spatial regionwith a smooth boundary ∂Ω; ν is the outward unit normal vector of the boundary
∂Ω; the given coefficients ci, mi, bi, αi, βi and di are positive constants; the initial values u0, v0 and w0 are non-negative
smooth functions which are not identically zero. Throughout this article, we assume that Ω and N are fixed.
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Model (MP)describes the population dynamics of three specieswhich disperse by diffusion in the habitat areaΩ . u, v and
w stand for the densities of the prey and two predators, respectively. The interaction between prey and predator species
is based on a ratio-dependent functional response, that is, the rate at which an individual predator species consumes an
individual prey species and two predators compete for single prey. Thus system (MP) is the so-called food web model
with one prey and two competing predators. The parameters ci are the capturing (or catching efficiency) rates of the
predators;mi are the conversion rates (or maximum growth rates); bi are the death rates; β1 and α2 can be regarded as the
relative competition efficiency of the other predator species, w, and the prey species, v, for the prey species, respectively.
α1 and β2 can be also regarded as the relative competition efficiency of the same predator species v and the prey species,
w, respectively. di are the diffusion rates of the corresponding species (the single prey, first and second predators). The
homogeneous Neumann boundary condition means that (MP) is self-contained and has no population flux across the
boundary ∂Ω .

In order to illustrate a set of candidate coupled differential equations which will govern the population dynamics of the
multi-species system, we present the following ODE system:

dxi
dt

= rixi − bi
ri
Ki

x2i + mxi


j

fij −


j

xjfji, (1.1)

which can be obtained by slightly modifying or generalizing the models proposed in [1–3]. Here xi is the population size of
species i, and fij are the functional responses dependent on the population sizes. The given coefficients are all constantswhich
have followingmeanings:m is the ecological efficiency; ri is a positive intrinsic growth rate for basal species (those that have
no resources) or a negative death rate for other species; Ki is the carrying capacity; bi is equal to 1 for basal species or 0 for
other species. Thus m and Ki are positive constants; ri is a positive or negative constant. For more biological background
information, see [1–4]. Until very recently, the most well-known and widely used forms of the functional response fij
were the Lotka–Volterra, Holling type II (or Michaelis–Menten), Beddington–DeAngelis and the ratio-dependent type—see
[5,1–3,6–10,4] and references therein for ODE systems; [11–22] for PDE systems with homogeneous Neumann boundary
conditions.

In particular, among the above functional responses, there has been much debate about the predator–prey model with
the Holling type II functional response that exhibits the highly controversial ‘‘paradox of enrichment’’, which means that
enriching a predator–prey system (by increasing the carrying capacity) causes an increase in the equilibrium density of the
predator but not in that of the prey and destabilizes the positive equilibrium [6–8,10]. After careful consideration of this
problem, Arditi and Ginzburg [5] proposed the 2×2 predator–preymodel with a ratio-dependent type functional response,
wherein the extinction of the prey species can be observed. Since then, it has been strongly championed by researchers
in numerous fields and supported by laboratory experiments and observations. These observations show that in many
situations when predators have to search, share and compete for their resources, a suitable functional response should
be ratio-dependent. These ratio-dependent models display the richest dynamics (e.g., total extinction), while the others
show the least in dynamical behavior [6,7,10]. Further, for multi-species interactions, Arditi and Michalski [1] proposed the
following generalized ratio-dependent functional response:
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where aij is the coupling constant; bik is the handling time of predator species i for prey species k; βij is the efficiency of
predator i for prey j; hjk is the relative preference of predator j for prey k; R(i) are the prey species for predator i; C(i) are
the predator species on prey i; xr(i)j is the part of species j that is currently being accessed as resource by species i; xC(j)

k is the
part of species k that is currently acting as predator of species j.

Among the specific examples which can be derived from (1.1) with a ratio-dependent functional response fij, the models
qualitatively studied are the two-species predator–prey system in [6,10], and a simple food-chain ODE system in [8].
Furthermore, by using deep mathematical analysis, the long-time behavior and emergence of stationary pattern in their
corresponding reaction–diffusion systems were also investigated under homogeneous Neumann boundary conditions;
see [19] for a diffusive ratio-dependent predator–prey system, [15,21] for a ratio-dependent simple food-chain model with
diffusion.

Regarding our topic, we consider a food-web (1.1) consisting of three species, a prey(basal) x1, two predators x2 and x3
(which eat x1). Then, using the obvious fact that xC(x1)

2 = x2 and xC(x1)
3 = x3, we can derive

xr(x2)1 =
β12x1x2

β12x2 + β13x3
and xr(x3)1 =

β13x1x3
β12x2 + β13x3

,
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