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a b s t r a c t

In this paper, the divergence theorem is proved by the Kurzweil–Henstock approach. The
physical definition of the divergence of a vector field is used, instead of the usual definition
used in mathematics papers. Sufficient conditions for the existence of the divergence of a
vector field on n-dimensionalmanifolds inRn are given. Concepts of strong differentiability
are used in the sufficient conditions.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The divergence theorem for vector fields in Rn is well-known and can be found in many books on multivariate calculus,
where the integral used is Riemann’s integral and vector fields are continuously differentiable. Using Lebesgue’s integral
and weakening the condition on the vector fields have been considered by Bochner, Shapiro, Cohen and others; see [1–3].
In the past thirty years, the divergence theorem under the Henstock–Kurzweil integral has been discussed by Pfeffer, Jurkat,
Nonnenmacher, Mawhin, Jarnik, Kurzweil, Macdonald and others; see [4–11].

In mathematics papers and books, the usual definition of the divergence div F of a vector field F = (F1, F2, . . . , Fn) is
given by

n
i=1 ∂Fi/∂xi, whereas in physics papers and books, it is given by

(divF) (p) = lim
diam(I)→0

1
|I|


∂ I
F · n̂ds,

where I is an interval containing the point pwith surface ∂ I and n̂ is the exterior normal to ∂ I . Physically, this corresponds to
the amount of flux of the vector field F out of I divided by the volume |I|. Recently, this physical definition of the divergence
has been used by Acker, Macdonald and Hubbard; see [12,13,8]. Asmentioned inMacdonald’s paper, this physical definition
fits hand in glove with the Henstock–Kurzweil integral, which is an integral of Riemann type. The divergence theorem can
be easily proved. Its proof is intuitive and natural.

In this paper, we shall give sufficient conditions for the existence of the divergence of a vector field on n-dimensional
manifolds in Rn.
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2. Preliminaries

For any fixed positive integer n, Rn denotes the n-dimensional Euclidean space. Let S ⊂ Rn; the boundary and outer
Lebesgue measure of S are denoted by ∂S and |S| respectively. Let x ∈ Rn with x = (x1, x2, . . . , xn); the norm ∥x∥ is
defined by ∥x∥ =

n
i=1 |xi|. Let η > 0; B(x, η) or Bη(x) denotes {y | ∥x − y∥ < η}. Let E be a compact interval in Rn. A

partition P of E is a finite family of non-overlapping compact intervals {Ii}mi=1 whose union is E. A division D of E is a finite
family of point–interval pairs {(xi, Ii)}mi=1 such that {Ii}mi=1 is a partition of E. Let δ(x) be a positive function defined on E. A
point–interval pair (x, I) is said to be McShane δ-fine if I ⊂ B(x, δ(x)). Suppose x belongs to I , i.e., x ∈ I ⊂ B(x, δ(x)). Then
(x, I) is said to be Henstock δ-fine. A division D of E is said to be McShane δ-fine if each point–interval pair in D is McShane
δ-fine. Similarly we can define Henstock δ-fine divisions.

Let E be a compact interval in Rn and f : E → R. Let D = {(xi, Ii)}mi=1 be a δ-fine division (McShane or Henstock) of E.
We denote the Riemann sum

m
i=1 f (xi)|Ii| by S(f ,D, δ). In this paper, a division D = {(xi, Ii)}mi=1 will often be written as

D = {(x, I)}, in which (x, I) represents the typical point–interval pair in D. The corresponding Riemann sumwill be written
as (D)


f (x)|I|.

Definition 1. Let f : E → R. Then f is said to be McShane integrable to A ∈ R on E if for each ϵ > 0, there exists a positive
function δ on E such that whenever D = {(x, I)} is a McShane δ-fine division of E, we have

|S(f ,D, δ) − A| ≤ ϵ.

We denote A as (L)

E f .

Definition 2. In the above Definition 1, if ‘‘a McShane δ-fine division’’ is replaced by ‘‘a Henstock δ-fine division’’, then f is
said to be Henstock–Kurzweil integrable on E. We denote A as (HK)


E f .

It is known that f is McShane integrable on E if and only if f is Lebesgue integrable on E; see [14].
The mapping F : E → Rn is called a vector field and F is denoted by F(x) = (F1(x), F2(x), . . . , Fn(x)), where Fi,

i = 1, 2, . . . , n, are real-valued functions on E.
In this paper, we always assume that F is continuous on E. Using the (n − 1)-dimensional McShane (Lebesgue) integral,

we can define the surface integral (Ln−1)

∂E F · n̂ of F over ∂E in the direction of the exterior normal n̂. The divergence divF

of F is defined as follows:

(divF) (p) = lim
I⊂B(p,δ(p))

δ(p)→0

1
|I|


∂ I
F · n̂,

where I is an interval containing point p and |I| denotes the volume of I . More precisely, for each ϵ > 0, there exists δ(p) > 0
such that for every interval I with p ∈ I ⊂ B(p, δ(p)), we have |(divF) (p) |I| −


∂ I F · n̂| ≤ ϵ|I|.

If p ∈ I ⊂ B(p, δ(p)) in the above definition is replaced by I ⊂ B(p, δ(p)) and pmay not belong to I , then F is said to have
strong divergence, denoted by (divF)s.

3. The divergence theorem in Rn

The following proof is given in [8]. The proof is intuitive and natural.

Theorem 1. Let F : E → Rn be a continuous vector field. Suppose the divergence divF exists on E. Then divF is
Henstock–Kurzweil integrable on E and

(HK)


E
divF = (Ln−1)


∂E

F · n̂.

Proof. Suppose the divergence divF exists on E. Hence for each x ∈ E and each ϵ > 0, there exists δ(x) > 0 such that for
every interval I with x ∈ I ⊂ B(x, δ(x)), we have(divF) (x) |I| −


∂ I
F · n̂

 ≤ ϵ|I|.

Let D = {(x, I)} be a Henstock δ-fine division of E. Then we have(D)


(divF) (x) |I| −


∂ I
F · n̂

 ≤ ϵ(D)


|I|.

Therefore(D)


(divF) (x) |I| −


∂E

F · n̂
 ≤ ϵ|E|.
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