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a b s t r a c t

Homogenization of a stochastic nonlinear reaction–diffusion equation with a large
nonlinear term is considered. Under a general Besicovitch almost periodicity assumption
on the coefficients of the equation we prove that the sequence of solutions of the
said problem converges in probability towards the solution of a rather different type
of equation, namely, the stochastic nonlinear convection–diffusion equation which we
explicitly derive in terms of appropriate functionals. We study some particular cases such
as the periodic framework, and many others. This is achieved under a suitable generalized
concept ofΣ-convergence for stochastic processes.
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1. Introduction

Homogenization theory is an important branch of asymptotic analysis. Since the pioneering work of Bensoussan et al. [1]
it has grown very significantly, giving rise to several sub-branches such as the deterministic homogenization theory and the
random homogenization theory. Each of these sub-branches has been developed and deepened. Regarding the deterministic
homogenization theory, from the classical periodic theory [1] to the recent general deterministic ergodic theory [2–5],
many results have been reported and continue to be published. We refer to some of these results [6,2–5] relating to
the deterministic homogenization of deterministic partial differential equations in the periodic framework and in the
deterministic ergodic framework in general.

The random homogenization theory is divided into two major subgroups: the homogenization of differential operators
with random coefficients, and the homogenization of stochastic partial differential equations. As far as the first subgroup is
concerned, many results have been obtained to date; we refer e.g. to [7–17].

In contrast with either the deterministic homogenization theory or the homogenization of partial differential operators
with random coefficients, very few results are available in the setting of the homogenization of stochastic partial differential
equations (SPDEs). We cite for example the works [18–22] which consider the homogenization problems related to
SPDEs with periodic coefficients (only!). Homogenization of SPDEs with non oscillating coefficients was considered
in [23] in domains with non periodically distributed holes. The approach in [23] is different and is the stochastic version
of Marchenko–Khruslov–Skrypnik’s theory developed in [24,25]. It should be noted that unfortunately for SPDEs with
oscillating coefficients no results are available beyond the periodic setting.

Given the significance of SPDEs inmodeling of physical phenomena, in addition to simple random periodically perturbed
phenomena, it is important to think of a theory generalizing that of the homogenization of SPDEs with periodic coefficients.
This is one of the objectives of this work.
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More precisely, we discuss the homogenization problem for the following nonlinear SPDE
duε =
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uε = 0 on ∂Q × (0, T )

uε(x, 0) = u0(x) in Q

(1.1)

in the almost periodic environment, where QT = Q × (0, T ), Q being a Lipschitz domain in RN with smooth boundary
∂Q , T is a positive real number and W is a m-dimensional standard Wiener process defined on a given probability space
(Ω,F , P). The choice of the aboveproblem lies in its application in engineering (see for example [26–28] in the deterministic
setting, and [29] in the stochastic framework, for more details). In fact, as in [26], the unknown uε may be viewed as the
concentration of some chemical species diffusing in a porous medium of constant porosity, with diffusivity a(y, τ ) and
reacting with background medium through the nonlinear term g(y, τ , u) under the influence of a random external source
M(y, τ , u)dW (M is a Rm-valued function and throughoutM(y, τ , u)dW will denote the scalar product ofM and dW in Rm).
Themotivation of this choice is several fold. Firstly, we start from a SPDE of reaction–diffusion type, andwe end up, after the
passage to the limit, with a SPDE of a convection–diffusion type; this is because of the large reaction’s term 1

ε
g(x/ε, t/ε2, uε)

which satisfies some kind of centering condition; see Section 4 for details. Secondly, the order of the microscopic time scale
here is twice that of the microscopic spatial scale. This leads after the passage to the limit, to a rather complicated so-called
cell problem, which is besides, a deterministic parabolic type equation, the random variable behaves in the latter equation
just like a parameter. Such a problem is difficult to deal with as, in our situation, it involves a microscopic time derivative
derived from the semigroup theory, which is not easy to handle. Thirdly, in order to solve the homogenization problem
under consideration, we introduce a suitable type of convergence which takes into account both deterministic and random
behavior of the data of the original problem. This method is formally justified by the theory of Wiener chaos polynomials
[30,31]. In fact, following [30] (see also [31]), any sequence of stochastic processes uε(x, t, ω) ∈ L2(Q×(0, T )×Ω) expresses
as follows:

uε(x, t, ω) =

∞
j=1

uεj (x, t)Φj(ω)

where the functions Φj are the generalized Hermite polynomials, known as the Wiener-chaos polynomials. The above
decomposition clearly motivates the definition of the concept of convergence used in this work; see Section 3 for further
details. Finally, the periodicity assumption on the coefficients is here replaced by the almost periodicity assumption.
Accordingly, it is the first time that an SPDE is homogenized beyond the classical period framework, and our result is thus,
new. It is also important to note that in the deterministic framework, i.e. when M = 0 in (1.1), the equivalent problem
obtained has just been solved by Allaire and Piatnitski [26] under the periodicity assumption on the coefficients, but with a
weight function on the derivative with respect to time. Our results therefore generalize to the almost periodic setting, those
obtained by Allaire and Piatnitski in [26].

The layout of the paper is as follows. In Section 2 we recall some useful facts about almost periodicity that will be used
in the next sections. Section 3 deals with the concept of Σ-convergence for stochastic processes. In Section 4, we state
the problem to be studied. We proved there a tightness result that will be used in the next section. We state and prove
homogenization results in Section 5. In particular we give in that section the explicit form of the homogenization equation.
Finally, in Section 6, we give some applications of the result obtained in the previous section.

Throughout Section 2, vector spaces are assumed to be complex vector spaces, and scalar functions are assumed to take
complex values. We shall always assume that the numerical space Rm (integer m ≥ 1) and its open sets are each equipped
with the Lebesgue measure dx = dx1 . . . dxm.

2. Spaces of almost periodic functions

The concept of almost periodic functions is well known in the literature.We present in this section some basic facts about
it, which will be used throughout the paper. For a general presentation and an efficient treatment of this concept, we refer
to [32–34].

Let B(RN) denote the Banach algebra of bounded continuous complex-valued functions on RN endowed with the sup
norm topology.

A function u ∈ B(RN) is called a almost periodic function if the set of all its translates {u(· + a)}a∈RN is precompact
in B(RN). The set of all such functions forms a closed subalgebra of B(RN), which we denote by AP(RN). From the above
definition, it is an easy matter to see that every element of AP(RN) is uniformly continuous. It is classically known that the
algebra AP(RN) enjoys the following properties:

(i) u ∈ AP(RN)whenever u ∈ AP(RN), where u stands for the complex conjugate of u;
(ii) u(· + a) ∈ AP(RN) for any u ∈ AP(RN) and each a ∈ RN .
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