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1. Introduction

In the present paper we deal with the problem of multiplicity results for the following quasilinear equation coupled with
the Dirichlet boundary condition

—Apu = Aa(X)f (u) in £2,
{u —0 on 2, (Py)

where £2 is a bounded open connected set in R" with smooth boundary 92, p > n, 4, is the p-Laplacian operator, X is a
positive parameter, o € L'(£2) is a non-zero potential, and f : [0, +0o[— R is a continuous function with f(0) = 0.

Problems of the type (P;) have been the object of intensive investigations in the recent years, see [1-8], and references
therein. Many of the aforementioned contributions guarantee the existence of at least two non-trivial weak solutions of (P;)
for A > 0 large enough where the key geometric assumptions on the nonlinear term F, where F : [0, +oo[— R is the
primitive of f, thatis F(s) = fosf(t)dt for every s > 0, can be summarized as

sup F > 0;
[0,+o0[ (1)
F(s F(s .
lim sup Q <0 and limsup Q <0.
s—0t+ Sp s—+00 Sp

In order to obtain the aforementioned multiplicity results, various variational approaches are exploited; for instance, Morse
theory [5,6], the mountain pass theorem and Ricceri-type three critical points results [1-4,7,9].

Notice that under (1.1) one can have even an exact multiplicity result for (P;). To see this,letp =2,n=1,2 =1 C R
be alarge interval, = 1,and f : [0, +00[— R defined by f(s) = s(s—a)(1—s), with0 < a < 1/2; here, t; = max(0, t).
It is clear that F verifies (1.1). Moreover, via a bifurcation argument, Wei [10] proved that there exists Ao > 0 such that for
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all0 < A < Aq problem (P;) has no positive solution, it has exactly one positive solution for A = XAq, and exactly two positive
solutions for A > Ao; see also [11].

The main purpose of the present paper is to guarantee the existence of at least three non-zero, non-negative weak
solutions for (Py) for certain values of A > 0 when (1.1) holds. According to the above exact multiplicity result, our aim
requires more specific assumptions both on f (or F) and «. In order to state our main result, we introduce the notation

-1

ke = %[r (1+g)]l (2:;)1_ m(2)

where I denotes the Euler Gamma-function.
Our main result reads as follows:

=
Ti= A~
S

5, (12)

Theorem 1.1. Let p > n, a € L'(£2) be a non-negative, non-zero function with compact support K. Assume that

(i) Sp := SUpP[g 4o F < +00;

(ii) limsup,_, o+ £ < 0.

Moreover, there exists ¢ > 0 such that
(iii) F(c) = max 1 F < Sf;
[0, koo (S llexll 1) P 1

V) 5 > Gk ampTa

Then, the following statements hold:

(a) Forevery A > 1, problem (P;)) has at least two non-zero, non-negative weak solutions.

(b) There exists A > 1 such that problem (P;) has at least three non-zero, non-negative weak solutions.

Before proving Theorem 1.1 some remarks are in order.

Remark 1.1. (a) Under the assumptions of Theorem 1.1, one can prove the existence of two non-zero weak solutions for
(P,) for enough large values of .. > 0; the first one is the global minimum of the energy functional associated with (P, ) with
negative energy-level, while the second one is a mountain-pass type solution with positive energy-level. A much precise
conclusion can be deduced as follows. Since (i),(ii) and (iv) imply (1.1), a suitable choice in [9] guarantees the existence of
at least two non-zero weak solutions for (P, ) for every A > Aq, where

. fg |VU|P 1.p
Ao =inf§ ————"————1uc W, (£2), /oe(x)F(u(x))dx >0¢. (1.3)
P [ «®)F (u(x))dx K
A simple estimate by means of a suitable truncation function and assumption (iv) show that
c®m(£2 \ K)
Ao ,

= PF(O)dist(K, 82) [l 1

which concludes the proof of (a) in Theorem 1.1; for details see (3.6). Even more, under these assumptions, Ricceri’s result
(see [9]) provides a stability of problem (P, ) with respect to any small nonlinear perturbation whenever A > X,. However,
for A > 0 small enough, problem (P;) has usually only the trivial solution. Example 3.1 supports this fact as well.

(b) Assumption (iii) requires that the function F has a local maximum ¢ > 0 on a quite large set whose size depends on

1
the function F itself, namely, on the interval I := [0, ko, (pSr|lct||;1)? ]. Note that a simple estimate together with hypothesis
(iv) shows that c belongs to the interval Ir. In view of the above discussion, the technical assumption (iii) is behind on the
existence of a third non-zero weak solution for (Py).

Remark 1.2. Note that in Theorem 1.1 we are able to prove the existence of a single value of A > 1 such that problem
(P;) has at least three non-zero, non-negative weak solutions. A challenging problem is to know if this phenomenon is
stable/unstable with respect to the parameter X ; namely, to confirm/infirm the existence of certain functions f satisfying all
the assumptions of Theorem 1.1 such that problem (P, ) has exactly two non-zero weak solutions for A €]1, +oo[\{i} and
at least three solutions for A = A.

Remark 1.3. Taking into account the special character of the function « (i.e.,  has a compact support K in §2), we could
expect to construct in a trivial way some weak solutions for (P, ) via p-harmonic functions. The reason is the following; for
simplicity, let us consider the case when £2 = B(0, R) and K = B(0, r) for some 0 < r < R. Due to (iii), the nonlinearity f
attains the zero value at least in two points (c being one of them since it is a local maximum for F). Let us denote such an
element by ¢ > 0. A simple calculation shows that the function ii. € Wol’p (B(0, R)) defined by

c ifx € K = B(0, 1),

ifx € B(O,R) \ K,
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