

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

Three non-zero solutions for a nonlinear eigenvalue problem

Francesca Faraci^{a,*}, Alexandru Kristály^b

- ^a Department of Mathematics, Università di Catania, Catania, Italy
- ^b Department of Economics, Babeş-Bolyai University, Cluj-Napoca, Romania

ARTICLE INFO

Article history: Received 16 August 2011 Available online 27 April 2012 Submitted by Manuel del Pino

Keywords: Nonlinear eigenvalue problem Dirichlet boundary conditions Multiple solutions

ABSTRACT

In the present paper we prove a novel multiplicity result for a model quasilinear Dirichlet problem (P_{λ}) depending on a positive parameter λ . By a variational method, we prove that for every $\lambda>1$ problem (P_{λ}) has at least two non-zero solutions, while there exists $\hat{\lambda}>1$ such that problem $(P_{\hat{\lambda}})$ has at least three non-zero solutions.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In the present paper we deal with the problem of multiplicity results for the following quasilinear equation coupled with the Dirichlet boundary condition

$$\begin{cases} -\Delta_p u = \lambda \alpha(x) f(u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$
 (P_{\lambda})

where Ω is a bounded open connected set in \mathbb{R}^n with smooth boundary $\partial \Omega$, p > n, Δ_p is the p-Laplacian operator, λ is a positive parameter, $\alpha \in L^1(\Omega)$ is a non-zero potential, and $f:[0,+\infty[\to\mathbb{R}]$ is a continuous function with f(0)=0.

Problems of the type (P_{λ}) have been the object of intensive investigations in the recent years, see [1–8], and references therein. Many of the aforementioned contributions guarantee the existence of *at least two* non-trivial weak solutions of (P_{λ}) for $\lambda > 0$ large enough where the key geometric assumptions on the nonlinear term F, where $F: [0, +\infty[\to \mathbb{R}])$ is the primitive of f, that is $F(s) = \int_0^s f(t)dt$ for every $s \ge 0$, can be summarized as

$$\begin{cases} \sup_{[0,+\infty[} F > 0; \\ \limsup_{s \to 0^+} \frac{F(s)}{s^p} \le 0 \quad \text{and} \quad \limsup_{s \to +\infty} \frac{F(s)}{s^p} \le 0. \end{cases}$$

$$(1.1)$$

In order to obtain the aforementioned multiplicity results, various variational approaches are exploited; for instance, Morse theory [5,6], the mountain pass theorem and Ricceri-type three critical points results [1–4,7,9].

Notice that under (1.1) one can have even an exact multiplicity result for (P_{λ}) . To see this, let p=2, n=1, $\Omega=I\subset\mathbb{R}$ be a large interval, $\alpha=1$, and $f:[0,+\infty[\to\mathbb{R}$ defined by $f(s)=s(s-a)(1-s)_+$ with 0<a<1/2; here, $t_+=\max(0,t)$. It is clear that F verifies (1.1). Moreover, via a bifurcation argument, Wei [10] proved that there exists $\lambda_0>0$ such that for

E-mail addresses: ffaraci@dmi.unict.it (F. Faraci), alexandrukristaly@yahoo.com (A. Kristály).

^{*} Corresponding author.

all $0 < \lambda < \lambda_0$ problem (P_λ) has no positive solution, it has exactly one positive solution for $\lambda = \lambda_0$, and exactly two positive solutions for $\lambda > \lambda_0$; see also [11].

The main purpose of the present paper is to guarantee the existence of at least three non-zero, non-negative weak solutions for (P_{λ}) for certain values of $\lambda > 0$ when (1.1) holds. According to the above exact multiplicity result, our aim requires more specific assumptions both on f (or F) and α . In order to state our main result, we introduce the notation

$$k_{\infty} := \frac{n^{\frac{-1}{p}}}{\sqrt{\pi}} \left[\Gamma\left(1 + \frac{n}{2}\right) \right]^{\frac{1}{n}} \left(\frac{p-1}{p-n}\right)^{1-\frac{1}{p}} m(\Omega)^{\frac{1}{n}-\frac{1}{p}}, \tag{1.2}$$

where Γ denotes the Euler Gamma-function.

Our main result reads as follows:

Theorem 1.1. Let p > n, $\alpha \in L^1(\Omega)$ be a non-negative, non-zero function with compact support K. Assume that

- (i) $S_F := \sup_{[0,+\infty[} F < +\infty;$ (ii) $\limsup_{s\to 0^+} \frac{F(s)}{s^p} \le 0.$

Moreover, there exists c > 0 such that

(iv)
$$\frac{F(c)}{c^p} > \frac{m(\Omega \setminus K)}{p \operatorname{dist}(K, \partial \Omega)^p \|\alpha\|_{L^1}}$$
.

Then, the following statements hold:

- (a) For every $\lambda > 1$, problem (P_{λ}) has at least two non-zero, non-negative weak solutions.
- (b) There exists $\hat{\lambda} > 1$ such that problem (P_i) has at least three non-zero, non-negative weak solutions.

Before proving Theorem 1.1 some remarks are in order.

Remark 1.1. (a) Under the assumptions of Theorem 1.1, one can prove the existence of two non-zero weak solutions for (P_{λ}) for enough large values of $\lambda > 0$; the first one is the global minimum of the energy functional associated with (P_{λ}) with negative energy-level, while the second one is a mountain-pass type solution with positive energy-level. A much precise conclusion can be deduced as follows. Since (i), (ii) and (iv) imply (1.1), a suitable choice in [9] guarantees the existence of at least two non-zero weak solutions for (P_{λ}) for every $\lambda > \lambda_0$, where

$$\lambda_0 = \inf \left\{ \frac{\int_{\Omega} |\nabla u|^p}{p \int_{K} \alpha(x) F(u(x)) dx} : u \in W_0^{1,p}(\Omega), \int_{K} \alpha(x) F(u(x)) dx > 0 \right\}. \tag{1.3}$$

A simple estimate by means of a suitable truncation function and assumption (iv) show that

$$\lambda_0 < \frac{c^p m(\Omega \setminus K)}{pF(c) \text{dist}(K, \partial \Omega)^p \|\alpha\|_{L^1}} < 1,$$

which concludes the proof of (a) in Theorem 1.1; for details see (3.6). Even more, under these assumptions, Ricceri's result (see [9]) provides a *stability* of problem (P_{λ}) with respect to any small nonlinear perturbation whenever $\lambda > \lambda_0$. However, for $\lambda > 0$ small enough, problem (P_{λ}) has usually only the trivial solution. Example 3.1 supports this fact as well.

(b) Assumption (iii) requires that the function F has a local maximum c > 0 on a quite large set whose size depends on the function F itself, namely, on the interval $I_F := [0, k_{\infty}(pS_F \|\alpha\|_{L^1})^{\frac{1}{p}}]$. Note that a simple estimate together with hypothesis (iv) shows that c belongs to the interval I_F . In view of the above discussion, the technical assumption (iii) is behind on the existence of a third non-zero weak solution for (P_{λ}) .

Remark 1.2. Note that in Theorem 1.1 we are able to prove the existence of a single value of $\hat{\lambda} > 1$ such that problem $(P_{\hat{i}})$ has at least three non-zero, non-negative weak solutions. A challenging problem is to know if this phenomenon is stable/unstable with respect to the parameter λ ; namely, to confirm/infirm the existence of certain functions f satisfying all the assumptions of Theorem 1.1 such that problem (P_{λ}) has exactly two non-zero weak solutions for $\lambda \in]1, +\infty[\setminus \{\hat{\lambda}\}]$ and at least three solutions for $\lambda = \hat{\lambda}$.

Remark 1.3. Taking into account the special character of the function α (i.e., α has a compact support K in Ω), we could expect to construct in a trivial way some weak solutions for (P_{λ}) via p-harmonic functions. The reason is the following; for simplicity, let us consider the case when $\Omega = B(0, R)$ and $K = \overline{B}(0, r)$ for some 0 < r < R. Due to (iii), the nonlinearity fattains the zero value at least in two points (c being one of them since it is a local maximum for F). Let us denote such an element by c>0. A simple calculation shows that the function $\tilde{u}_c\in W^{1,p}_0(B(0,R))$ defined by

$$\tilde{u}_{c}(x) = \begin{cases} c & \text{if } x \in K = \overline{B}(0, r), \\ c \frac{|x|^{\frac{p-n}{p-1}} - R^{\frac{p-n}{p-1}}}{r^{\frac{p-n}{p-1}} - R^{\frac{p-n}{p-1}}} & \text{if } x \in B(0, R) \setminus K, \end{cases}$$

Download English Version:

https://daneshyari.com/en/article/6419113

Download Persian Version:

https://daneshyari.com/article/6419113

Daneshyari.com