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a b s t r a c t

There has been a longstanding interest in deriving conditions under which dynamic
optimization problems are normal, that is, the necessary conditions of optimality (NCO)
can bewritten with a nonzeromultiplier associated with the objective function. This paper
builds upon previous results on nondegenerate NCO for trajectory constrained optimal
control problems to provide even stronger, normal forms of the conditions. The NCO
developed may address problems with nonsmooth, less regular data. The particular case
of calculus of variations problems is here explored to show a favorable comparison with
existent results.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study Necessary Conditions of Optimality (NCO) for Dynamic Optimization Problems with pathwise
inequality constraints. In particular, we are interested in normal forms of the NCO, i.e., forms in which the scalar multiplier
associated with the objective function – here called λ – is nonzero. The normal forms of the NCO are guaranteed to supply
non-trivial information, in the sense that they guarantee that the objective function is taken into account when selecting
candidates to optimal processes.

Many important applications of NCO would benefit or even require normal forms. In engineering applications or in
decision making contexts, the NCO are used to select a candidate (or a small number of candidates) for optimal solution. If
we do not guarantee normality and allow λ = 0, then the NCO identify a set of candidates in which the objective function
is not used in the selection, and such an identified set is typically too large. This is even more critical in applications where
the NCO are used to find a solution without human intervention (e.g. synthesis of controls for autonomous vehicles), and
thus we have to guarantee that the NCO remain informative.

Normal forms of NCO are also important in establishing results on the regularity properties of optimal solutions and
to establish second-order conditions. In most results of such nature, the possibility of selecting λ ≠ 0 has to be assumed
(e.g. [1–5]) or conditions are imposed so as to guarantee that the system of first-order conditions is normal (e.g. [6,7]).

The importance of studying normal forms of NCO is well illustrated in the history of Mathematical Programming [8,9].
The Kuhn–Tucker conditions [10], one of the most cited results in optimization, are a strengthened, nondegenerate version
of some earlier conditions, now less known, of Fritz John [11].
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There has been a growing interest and literature on strengthened forms of NCO for Optimal Control Problems (OCP),
reporting both nondegenerate and normal forms of the maximum principle (MP). (See e.g. [12] for what appears to be
the first result on the subject, the recent works [13,14] and references therein, as well as [15] which provides references
to an extensive Russian literature on the subject.) The normality results reported in literature require different degrees
of regularity on the problem data [16–21]. Requiring very little regularity on the data, we can find strengthened NCO
in [22] which, although not ensuring normality, are able to avoid certain sets of degenerate multipliers. Building upon
the nondegeneracy results in [22], we develop here an even stronger form of NCO: a normal form. An advantage of our
result comparing with similar results in literature is the fact that it addresses problems with less regular, nonsmooth data.
However, the additional hypotheses under which our result is valid, known as constraint qualification (CQ), involve the
optimal control which we do not know in advance, and consequently, in general, it is not so easy to verify whether the CQ is
satisfied for the problemwe have in hands. Nevertheless, in some cases, the conditions we propose compare favorably with
existing results. One such case is the application of our result to calculus of variations problems (CVP). We study normality
of NCO for CVP as a consequence of the results on normality of NCO for OCP here developed. The special structure of CVP
permits the derivation of CQ that aremuch easier to verify than in the optimal control case. The conditions thereby obtained
generalize a result in [16] to the nonsmooth case.

This paper is organized as follows. In a brief Preliminaries section, we provide some of the concepts and notation that are
used throughout the paper. Section 3 describes the context of our results: optimal control problems with state constraints
and the nonsmooth maximum principle that is to be strengthened in later sections. We also describe the case of CVP with
inequality constraints and its necessary conditions of optimality. Section 4 provides a main result of this paper: a normal
form of NCO valid under a suitable constraint qualification. In Section 5, we apply the previous result to a CVP and deduce
CQs which are specific for this problem and have the advantage that they are easy to verify. In Section 6 we compare the
results obtained in the previous section with other results when applied to CVPs. Finally, in Sections 7 and 8, we prove the
main results and lemmas of this paper.

2. Preliminaries

Throughout,B denotes the closed unit ball, co S denotes the convex hull of a set S, supp{µ} denotes the support ofmeasure
µ, and δ{0} denotes the Dirac unit measure concentrated at 0. We also make reference to the space W 1,1 of absolutely
continuous functions, C∗ the dual space of continuous functions, and C1,1 the space of functions which are continuously
differentiable with locally Lipschitz continuous derivatives.

The limiting normal cone of a closed set C ⊂ Rn at x̄ ∈ C is defined to be

NL
C (x̄) := {η ∈ Rn

: ∃ sequences {Mi} ∈ R+, xi → x̄, ηi → η such that

xi ∈ C and ηi · (y − xi) ≤ Mi∥y − xi∥2 for all y ∈ Rn, i = 1, 2, . . .}.

Given a lower semicontinuous function f : Rn
−→ R ∪ {∞} the limiting subdifferential of f at a point x̄ ∈ Rn such that

f (x) < +∞ is the set

∂Lf (x̄) = {η ∈ Rn
: (η, −1) ∈ NL

epi f (x̄, f (x̄))};

where epi f := {(x, α) : α ≥ f (x)}. We also make use of the hybrid partial subdifferential of h in the x-variable defined as

∂>
x h(t, x) := co{ξ : there exist (ti, xi) → (t, x) s.t.

h(ti, xi) > 0, h(ti, xi) → h(t, x), and hx(ti, xi) → ξ}.

We refer to [23–25] for further concepts of nonsmooth analysis and optimal control. See also [26] for a review using a
notation similar to the one used here.

3. Context

Consider the fixed left-endpoint Optimal Control Problem (OCP) with inequality state constraints:

(OCP1)


Minimize g(x(1))
subject to

ẋ(t) = f (t, x(t), u(t)) a.e. t ∈ [0, 1]
x(0) = x0
u(t) ∈ Ω(t) a.e. t ∈ [0, 1]
h (t, x(t)) ≤ 0 for all t ∈ [0, 1].

The data for this problem comprise functions g : Rn
→ R, f : [0, 1] × Rn

× Rm
→ Rn, h : [0, 1] × Rn

→ R, an initial
state x0 ∈ Rn, and a multifunction Ω : [0, 1] ⇒ Rm.

The set of control functions for (OCP1), denoted U, is the set of measurable functions u : [0, 1] → Rm such that
u(t) ∈ Ω(t) a.e. t ∈ [0, 1]. A state trajectory is an absolutely continuous function which satisfies the differential equation in
the constraints for some control function u. The domain of the above optimization problem is the set of admissible processes,
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