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a b s t r a c t

By using a generalization of Sturm–Liouville problems in discrete spaces, a basic class of
symmetric orthogonal polynomials of a discrete variable with four free parameters, which
generalizes all classical discrete symmetric orthogonal polynomials, is introduced. The
standard properties of these polynomials, such as a second order difference equation, an
explicit form for the polynomials, a three term recurrence relation and an orthogonality
relation are presented. It is shown that two hypergeometric orthogonal sequences with
20 different weight functions can be extracted from this class. Moreover, moments
corresponding to these weight functions can be explicitly computed. Finally, a particular
example containing all classical discrete symmetric orthogonal polynomials is studied in
detail.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Some special functions of mathematical physics such as classical orthogonal polynomials and cylindrical functions [1],
are solutions of a differential equation of hypergeometric type [2,1,3]

σ(x)y′′(x) + τ(x)y′(x) + λy(x) = 0, (1)

and extendible by changing Eq. (1) to a difference equation of the form

σ̃ (x(s))
∆

∇x1(s)


∇y(s)
∇x(s)


+

τ̃ (x(s))
2


1y(s)
1x(s)

+
∇y(s)
∇x(s)


+ λy(s) = 0, (2)

where

1x(s) = x(s + 1) − x(s), ∇x(s) = 1x(s − 1),
∆

1x(s)
f (s) =

f (s + 1) − f (s)
x(s + 1) − x(s)

,

σ̃ (x(s)) and τ̃ (x(s)) are polynomials of degree at most two and one, respectively, in x(s), λ is a constant, and x1(s) =

x(s + 1/2).
The difference equation (2), which is obtained by approximating the differential equation (1) on a non-uniform lattice, is

ofmuch importance [3] as its particular solutions have been applied in quantummechanics, theory of group representations
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and especially computational mathematics, where one can point to the Clebsch–Gordan and Racah coefficients with wide
applications in atomic and nuclear spectroscopy. There exist different approaches for the analysis of orthogonal polynomials
of a discrete variable running from the classical Refs. [4,5] to the recent monograph [6], which is a basic reference on
orthogonal polynomials.

Also there exists a number of numerical and symbolic methods for solving hypergeometric equations of type (1) or
(2), which are of interest in applications, particularly for cases containing symmetric solutions, such as resolution of
the Gibbs phenomenon [7,8], Fourier–Kravchuk transform used in Optics [9], approximation of harmonic oscillator wave
functions [10], tissue segmentation of human brain MRI through preprocessing [11], reconstructions for electromagnetic
waves in the presence of a metal nanoparticle [12], efficient determination of the critical parameters and the statistical
quantities for Klein–Gordon and sine–Gordon equations with a singular potential [13], image representation [14,15] and
quantitative theory for the lateral momentum distribution after strong-field ionization [16].

The main aim of this paper is to introduce a basic class of symmetric orthogonal polynomials of a discrete variable
with four free parameters, which is the polynomial solution of a symmetric generalization of Eq. (2) on the uniform lattice
x(s) = s. Computational aspects of these new polynomials are described in detail giving their explicit representation as
well as the three-term recurrence relation they satisfy. A full classification of weight functions and orthogonality supports
is given together with computing the moments of the aforesaid weights. From this class all classical symmetric orthogonal
polynomials of a discrete variable can be recovered (Section 6), and its limit relationwith the continuous type of generalized
classical symmetric orthogonal polynomials is given (see Remark 2).

A regular Sturm–Liouville problem of continuous type is a boundary value problem of the form

d
dx


k(x)

dyn(x)
dx


+ (λnϱ(x) − q(x)) yn(x) = 0 (k(x) > 0, ϱ(x) > 0), (3)

which is defined on an open interval (a, b), and has the boundary conditions

α1y(a) + β1y′(a) = 0, α2y(b) + β2y′(b) = 0, (4)

where α1, α2 and β1, β2, are given constants and k(x), k′(x), q(x), and ϱ(x) in (3) are to be assumed continuous for x ∈ [a, b].
If one of the boundary points a and b is singular (i.e. k(a) = 0 or k(b) = 0), the problem is transformed to a singular
Sturm–Liouville problem.

Let yn and ym be two eigenfunctions of the operator D(k(x)D) − q(x)I , where D is the standard derivative operator.
According to Sturm–Liouville theory [1], they are orthogonal with respect to the weight function ϱ(x) under the given
conditions (4) and satisfy the orthogonality relation b

a
ϱ(x)yn(x)ym(x)dx =

 b

a
ϱ(x)y2n(x)dx


δn,m.

Many of special functions are orthogonal solutions of a regular or singular Sturm–Liouville problem having the symmetry
property (φn(−x) = (−1)nφn(x)) so that have found valuable applications in physics and engineering, as alreadymentioned.
In [17], the classical equation (3) is symmetrically extended as follows.

Theorem 1 ([17]). Let φn(−x) = (−1)nφn(x) be a sequence of symmetric functions satisfying the equation

A(x)φ′′

n (x) + B(x)φ′

n(x) + (λnC(x) + D(x) + σnE(x)) φn(x) = 0, (5)

where

σn =
1 − (−1)n

2
=


0, n even,
1, n odd, (6)

and λn is a sequence of constants. If A(x), (C(x) > 0), D(x) and E(x) are even functions and B(x) is odd then ν

−ν

ϱ∗(x)φn(x)φm(x)dx =

 ν

−ν

ϱ∗(x)φ2
n(x)dx


δn,m,

where

ϱ∗(x) = C(x) exp


B(x) − A′(x)
A(x)

dx


=
C(x)
A(x)

exp


B(x)
A(x)

dx


. (7)

The weight function defined in (7)must be positive and even on [−ν, ν] and the function

A(x)K(x) = A(x) exp


B(x) − A′(x)
A(x)

dx


= exp


B(x)
A(x)

dx


must vanish at x = ν , i.e. A(ν)K(ν) = 0. In this way, since K(x) = ϱ∗(x)/C(x) is an even function so A(−ν)K(−ν) = 0
automatically.
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