

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

Bounded log-harmonic functions with positive real part

H.E. Özkan*, Y. Polatoğlu

Department of Mathematics and Computer Sciences, İstanbul Kültür University, Istanbul, Turkey

ARTICLE INFO

ABSTRACT

Article history: Received 25 July 2012 Available online 16 October 2012 Submitted by D. Khavinson

Keywords: Close-to-star function The radius of starlikeness Distortion estimate

1. Introduction

Let $H(\mathbb{D})$ be the linear space of all analytic functions defined on the open unit disc $\mathbb{D} = \{z \mid |z| < 1\}$, and let *B* be the set of all functions $w(z) \in H(\mathbb{D})$ such that |w(z)| < 1 for all $z \in \mathbb{D}$. A log-harmonic mapping is a solution of the non-linear elliptic partial differential equation $\overline{f_z} = w(z) (\overline{f}/f) f_z$, where w(z) is the second dilatation of *f* and $w(z) \in B$. In the present paper we investigate the set of all log-harmonic mappings *R* defined on the unit disc \mathbb{D} which are of the form $R = H(z)\overline{G(z)}$, where H(z) and G(z) are in $H(\mathbb{D})$, H(0) = G(0) = 1, and Re(R) > 0 for all $z \in \mathbb{D}$. The class of such functions is denoted by \mathcal{P}_{LH} .

Let $H(\mathbb{D})$ be the linear space of all analytic functions defined on the open unit disc \mathbb{D} , and let *B* be the set of all functions $w(z) \in H(\mathbb{D})$ such that |w(z)| < 1 for all $z \in \mathbb{D}$. A log-harmonic mapping is a solution of the non-linear elliptic partial differential equation

$$\overline{f_{\overline{z}}} = w(z) \left(\frac{\overline{f}}{\overline{f}}\right) f_z, \tag{1.1}$$

where w(z) is the second dilatation of f and $w(z) \in B$. It has been shown [1] that if f is a non-vanishing log-harmonic mapping, then f can be expressed as

$$f = h(z)\overline{g(z)} \tag{1.2}$$

where h(z) and g(z) are analytic in \mathbb{D} , i.e., h(z), $g(z) \in H(\mathbb{D})$. On the other hand, if f vanishes at z = 0 but is not identically zero, then f admits the following representation:

$$f = z|z|^{2\beta}h(z)\overline{g(z)}$$
(1.3)

where $Re\beta > -1/2$, H(z), $G(z) \in H(\mathbb{D})$ and $h(0) \neq 0$, g(0) = 1. In general, the class of log-harmonic mappings is denoted by δ_{LH} . Univalent log-harmonic mappings and log-harmonic mappings have been studied extensively (for details see [1–5]).

Let \mathcal{P}_{LH} be the set of all log-harmonic mappings *R* defined on the unit disc \mathbb{D} which are of the form

$$R = H(z)\overline{G(z)},\tag{1.4}$$

where H(z) and G(z) are in $H(\mathbb{D})$, H(0) = G(0) = 1 and Re(R) > 0 for all $z \in \mathbb{D}$. In particular, the set \mathcal{P} of all analytic functions p(z) in \mathbb{D} with p(0) = 1 and Rep(z) > 0 in \mathbb{D} is a subset of \mathcal{P}_{LH} [2].

* Corresponding author. E-mail addresses: e.ozkan@iku.edu.tr (H.E. Özkan), y.polatoglu@iku.edu.tr (Y. Polatoğlu).

 $^{0022\}text{-}247X/\$$ – see front matter C 2012 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2012.09.059

Finally, let Ω be the family of functions $\phi(z)$ which are analytic in \mathbb{D} , and satisfy the conditions $\phi(0) = 0$, $|\phi(z)| < 1$ for all $z \in \mathbb{D}$, and let $F_1(z) = z + \alpha_2 z^2 + \alpha_3 z^3 + \cdots$ and $F_2(z) = z + \beta_2 z^2 + \beta_3 z^3 + \cdots$ be analytic functions in \mathbb{D} . We say that $F_1(z)$ is subordinate to $F_2(z)$ if there exists $\phi(z) \in \Omega$ such that $F_1(z) = F_2(\phi(z))$. We denote it by $F_1(z) \prec F_2(z)$ [6]. The following theorem was proved by Abdulhadi [2], and plays an important role in our study.

Theorem 1.1. Let $R(z) = H(z)\overline{G(z)} \in \mathcal{P}_{LH}$. Then $p(z) = \frac{H(z)}{G(z)} \in \mathcal{P}$. Conversely, given $p(z) \in \mathcal{P}$ and $w(z) \in B$, there exist non-vanishing functions H(z) and G(z) in $H(\mathbb{D})$ such that $p(z) = \frac{H(z)}{G(z)}$, $R = H(z)\overline{G(z)} \in \mathcal{P}_{LH}$, and R is a solution of (1.1) with respect to the given w(z).

In this paper, we will investigate the class of log-harmonic mappings defined by

 $\mathcal{P}_{LH(M)} = \left\{ R \mid R = H(z)\overline{G(z)} \in \mathcal{P}_{LH}, \left| \frac{H(z)}{G(z)} - M \right| < M, M \ge 1 \right\}.$

2. The main results

Theorem 2.1. $R(z) = H(z)\overline{G(z)} \in \mathcal{P}_{LH(M)}$ if and only if $\frac{H(z)}{G(z)} \prec \frac{1+z}{1-(1-\frac{1}{M})z}$.

Proof. Let $R(z) = H(z)\overline{G(z)}$ be an element of $\mathcal{P}_{LH(M)}$; then we have

$$\left|\frac{H(z)}{G(z)} - M\right| < M \Leftrightarrow \left|\frac{1}{M}\frac{H(z)}{G(z)} - 1\right| < 1.$$

Therefore the function

$$\psi(z) = \frac{1}{M} \frac{H(z)}{G(z)} - 1$$

has modulus at most 1 in the unit disc \mathbb{D} and so

$$\phi(z) = \frac{\psi(z) - \psi(0)}{1 - \psi(0)\psi(z)} = \frac{\left(\frac{1}{M}\frac{H(z)}{G(z)} - 1\right) - \left(\frac{1}{M} - 1\right)}{1 - \left(\frac{1}{M} - 1\right)\left(\frac{1}{M}\frac{H(z)}{G(z)} - 1\right)},\tag{2.1}$$

and then $\phi(0) = 0$, $|\phi(z)| < 1$; therefore by the Schwarz lemma,

$$|\phi(z)| \le |z|. \tag{2.2}$$

From (2.1) and (2.2) we obtain

$$\frac{H(z)}{G(z)} = \frac{1+\phi(z)}{1-\left(1-\frac{1}{M}\right)\phi(z)}.$$
(2.3)

The equality (2.3) shows that

$$\frac{H(z)}{G(z)} \prec \frac{1+z}{1-\left(1-\frac{1}{M}\right)z}$$

Conversely, suppose that the functions H(z) and G(z) are analytic in \mathbb{D} , and satisfy the conditions H(0) = G(0) = 1, $\frac{H(z)}{G(z)} \prec \frac{1+z}{1-(1-\frac{1}{M})z}$; then we have

$$\begin{aligned} \frac{H(z)}{G(z)} &\prec \frac{1+z}{1-\left(1-\frac{1}{M}\right)z} \Rightarrow \frac{H(z)}{G(z)} = \frac{1+\phi(z)}{1-\left(1-\frac{1}{M}\right)\phi(z)} \Rightarrow \\ \frac{H(z)}{G(z)} &- M = M \frac{\frac{1-M}{M} + \phi(z)}{1+\frac{1-M}{M}\phi(z)}. \end{aligned}$$

On the other hand, the function $\left(\frac{\frac{1-M}{M}+\phi(z)}{1+\frac{1-M}{M}\phi(z)}\right)$ maps the unit circle onto itself; then we have

$$\left. \frac{H(z)}{G(z)} - M \right| = \left| M \frac{\frac{1-M}{M} + \phi(z)}{1 - \frac{1-M}{M}\phi(z)} \right| \le M$$

Download English Version:

https://daneshyari.com/en/article/6419210

Download Persian Version:

https://daneshyari.com/article/6419210

Daneshyari.com