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a b s t r a c t

Thiswork dealswith the blow-up criterion for the strong solution to the three-dimensional
viscous liquid–gas two-phase flowmodel in terms of the L1(0, T ; L∞)-norm of the gradient
of the velocitywith two types of boundary conditions: theDirichlet boundary condition and
the Navier-slip boundary condition. There is no extra restriction on viscosity coefficients.
The result also applies to the whole space case.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the 3D viscous liquid–gas two-phase flow model in the following formmt + div(mu) = 0,
nt + div(nu) = 0,
(mu)t + div(mu ⊗ u) + ∇P(m, n) = µ∆u + (λ + µ)∇divu in Ω × (0, T ),

(1.1)

with the initial conditions

(m, n, u)|t=0 = (m0, n0, u0), in Ω, (1.2)

and boundary conditions:
(i) Dirichlet boundary condition: Ω ⊂ R3 is a bounded smooth domain, and

u = 0, on ∂Ω; (1.3)

(ii) Navier-slip boundary condition: Ω ⊂ R3 is a bounded smooth domain, and

u · ñ = 0, curlu × ñ = 0 on ∂Ω, (1.4)

where ñ = (ñ1, ñ2, ñ3) is the unit outward normal to ∂Ω .

The variables m = αlρl, n = αgρg , u = (u1, u2, u3) and P = P(m, n) denote the liquid mass, gas mass, the velocity of
the liquid and gas and the common pressure for both phases, respectively; µ and λ are viscosity constants, satisfying

µ > 0, 2µ + 3λ ≥ 0. (1.5)

The other unknown variables αl and αg ∈ [0, 1] denote the liquid and gas volume fractions; ρl and ρg denote liquid and gas
densities, satisfying equations of state

ρl = ρl,0 +
P − Pl,0

a2l
, ρg =

P
a2g

, (1.6)
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where al and ag are known constants which denote, respectively, sonic speeds in the liquid and gas; Pl,0 and ρl,0 are the
reference pressure and density given as constants. Moreover,

αl + αg = 1. (1.7)

Note that from (1.6) and (1.7), the pressure law satisfies

P(m, n) = C0

−b(m, n) +


b(m, n)2 + c(m, n)


, (1.8)

here C0
=

1
2a

2
l , k0 = ρl,0 −

Pl,0
a2l

> 0, a0 =


ag
al

2
and

b(m, n) = k0 − m −


ag
al

2

n = k0 − m − a0n,

c(m, n) = 4k0


ag
al

2

n = 4k0a0n.

We are interested in the Drift-flux type model of two-phase flows. The 1D version of the model, often combined with a
more general slip law such that non-equal fluid velocities are taken into account, represents a usefulmodelwithin petroleum
and nuclear industry applications. In the present paper, we consider the simplified model of Drift-flux type (1.1), where we
assumed that the two fluids have the common pressure and shared the equal velocity, neglected the external force and the
effect of gas in the convective term in the mixture momentum equation. Such a (multi-dimensional) model is relevant to
explore for various applications where the fluid is composed of gas that is dispersed in the liquid phase such that the two
phases move with the same velocity more or less. For more information about the model, we refer the reader to [1–3] and
references therein.

There are some works about the viscous liquid–gas two-phase flow model. For the model (1.1) in 1D, where the liquid
is incompressible and the gas is polytropic, the global existence and uniqueness of weak solution to the free boundary
value problem was studied in [4–7]. For more results about the 1D case of the relevant model, refer to [8–11], where
more interesting phenomenon are described. Specifically, in [12], where both of the two fluids are compressible, the global
existence of a weak solution is studied. For the model (1.1) in 2D, Yao et al. [13] obtained the existence of a global weak
solution when the initial energy is small, and this can be viewed to be a generalization of the results in [12] from 1D to 2D.
They [14] established a blow-up criterion in terms of the upper bound of the liquid mass for the strong solution in a smooth
bounded domain when there is no initial vacuum. For the model (1.1) in 3D, Guo et al. [15] obtained the existence of the
global strong solution when the initial energy is small, and the initial vacuum is allowed. Hou andWen [16] proved that the
bound of the L1t L

∞
x norm of the deformation tensor of the velocity gradient D(u) =

1
2 (∇u + ∇ut) controlled the possible

breakdown of the strong solutions with vacuum, when 0 ≤ s0m0 ≤ n0 ≤ s0m0, where s0 and s0 are positive constants.
Recently, Wen et al. [17] have obtained a blow-up criterion in terms of the upper bound of the liquid mass for the strong
solution with vacuum, and there is relaxed restriction 25µ

3 > λ on viscosity coefficients.
The method used to get the blow-up criterion of the strong solution to the viscous liquid–gas two-phase flow model

is similar to the single phase Navier–Stokes equation. So, let us introduce some works about this for a single phase
Navier–Stokes equation. For the 2D compressible Navier–Stokes equations, Sun and Zhang [18] obtained a blow-up criterion
in terms of the upper bound of density for the strong solution. For the 3D compressible Navier–Stokes equations, they [19]
obtained a blow-up criterion in terms of the upper bound of density for the strong solution, under the restriction λ < 7µ.
In both papers, the initial vacuum is allowed and the domain included both the bounded smooth domain and RN , N = 2, 3.
Huang et al. [20] obtained Serrin type blow-up criterion for the strong solution. They [21] established the following blow-up
criterion when there is initial vacuum and λ < 7µ: if T ∗ < ∞ is the maximal time of the existence of the classical solution,
then

lim
T→T∗

 T

0
∥∇u(t)∥L∞(Ω)dt = ∞.

Recently, Huang et al. in their paper [22] have removed the restriction λ < 7µ for a 3D model with initial vacuum, and got
the blow-up criterion of the strong solution:

lim
T→T∗

 T

0
∥D(u)(t)∥L∞(Ω)dt = ∞,

where D(u) =
1
2 (∇u + ∇ut).

In the present paper, we obtain a blow-up criterion for the strong solution to the 3D viscous liquid–gas two-phase flow
model in terms of L1(0, T ; L∞)-norm of the gradient of the velocity without the extra restriction λ < 7µ in two types of
boundary conditions, when there is no initial vacuum, which improved the result in [14], in which the result held for the 3D
case under the restriction λ < 7µ, and the result in the present paper can be applied to the Navier-slip boundary condition
and the whole space case. We should mention that the ideas introduced by the authors in [18–20,22,23] play crucial roles
in our proof here.
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