

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Equilibria of nonconvex valued maps under constraints $\stackrel{\Leftrightarrow}{\sim}$

Jarosław Mederski

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland

ARTICLE INFO

Article history: Received 8 February 2011 Available online 6 December 2011 Submitted by H. Frankowska

Keywords: Equilibria Set-valued maps Approximations Sleek retracts Tangent maps

0. Introduction

Let *M* be a *compact* subset of a Banach space *E* and $\varphi : M \multimap E$ be an *upper semicontinuous* set-valued map with *compact* values. In the paper we ask about the existence of *equilibria* of φ , i.e. $x_0 \in M$ such that $0 \in \varphi(x_0)$.

A classical result due to Browder and Fan [4,9] says that if M is convex, $\varphi : M \multimap E$ has convex values and is *inward* in the sense that

$$\varphi(x) \cap T_M(x) \neq \emptyset$$
 for each $x \in M$,

where $T_M(x) = cl(\bigcup_{h>0} h(M - x))$, then φ admits an equilibrium. Observe that $T_M(x)$ is a tangent cone to M at x and therefore the inwardness condition (1) can be interpreted as a tangency condition.

This result has been generalized many times, e.g. [6–8]. In [2], Ben-El-Mechaiekh and Kryszewski relaxed the convexity of *M* and obtained a similar result. Namely, if *M* is \mathcal{L} -retract with the nontrivial Euler characteristic ($\chi(M) \neq 0$), φ is as above but tangent with respect to the Clarke cone, i.e.

$$\varphi(x) \cap C_M(x) \neq \emptyset$$
 for each $x \in M$,

where $C_M(x)$ stands for the Clarke cone tangent to M at x, then an equilibrium still exists.

A natural problem concerning the relaxation of convexity of values of φ arises. As shown in [2], if *M* is as above and φ has acyclic (e.g. contractible or cell-like) values and satisfies the strong tangency condition

$$\varphi(x) \subset C_M(x)$$
 for each $x \in M$,

then there equilibria exist.

The following conjecture was posed in [2]:

(C) If M is an \mathcal{L} -retract such that $\chi(M) \neq 0$, φ has acyclic values and condition (2) is satisfied, then there exists an equilibrium of φ .

ABSTRACT

In the paper the notion of *n*-tangency for set-valued maps defined on a subset of a Banach space is considered. The existence of equilibria of upper semicontinuous map being *n*-tangent to a sleek retract with the nontrivial Euler characteristic is established.

© 2011 Elsevier Inc. All rights reserved.

(3)

(2)

(1)

^{*} Research supported in part by KBN Grant No. NN 201395137. *E-mail address:* jmederski@mat.umk.pl.

⁰⁰²²⁻²⁴⁷X/\$ – see front matter $\,\, @$ 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2011.12.010

We show that the very conjecture is false.

Example 0.1. Let $M = [0, 1] \times [0, 1]$, $E = \mathbb{R}^2$ and $\varphi : M \multimap E$ be a map defined by:

$$\varphi(x, y) := \begin{cases} \operatorname{conv}(\{(-1, 0), (0, 1)\}) \cup \operatorname{conv}(\{(0, 1), (1, 0)\}), & \text{if } (x, y) \in \{1\} \times [0, 1], \\ \{(1, 0)\}, & \text{if } (x, y) \in [0, 1) \times [0, 1]. \end{cases}$$

Since *M* is convex, then for any $x \in M$, $C_M(x) = T_M(x)$ and $\varphi(x) \cap C_M(x)$ is nonempty and convex. Then condition (2) is satisfied and φ is upper semicontinuous with contractible, hence acyclic, values. Moreover *M* is compact and convex, thus *M* is an \mathcal{L} -retract and $\chi(M) = 1$ (see Section 1). However, it is clear that $0 \notin \varphi(x)$ for each $x \in M$.

Hence, it appears that the pointwise tangency condition (2) together with the acyclicity (or even contractibility) of values of φ are too weak for the existence of equilibria. In order to obtain a positive answer it seems that one needs to study the local behavior of φ with respect to M in terms of homotopical triviality. We provide a class of the so-called *n*-tangent set-valued maps with not necessarily convex values (see Definition 2.1) and show that for that class the problem of existence of equilibria has a solution (see Theorem 2.3, Corollary 2.7).

1. Preliminaries

We consider set-valued maps $\varphi : X \multimap Y$, where X and Y are metric spaces, that assign to each $x \in X$, a nonempty subset $\varphi(x)$ of Y. By the graph of φ we mean the set $Gr(\varphi) := \{(x, y) \in X \times Y \mid y \in \varphi(x)\}$. We say that a set-valued map φ is *lower semicontinuous* if for any open set $U \subset Y$, the preimage $\varphi^{-1}(U) := \{x \in X : \varphi(x) \cap U \neq \emptyset\}$ is open; φ is *upper semicontinuous* if for any open set $U \subset Y$, the small preimage $\varphi^{+1}(U) := \{x \in X : \varphi(x) \cap U \neq \emptyset\}$ is open; φ is *continuous* if it is upper and lower semicontinuous simultaneously. By a *selection* of φ we mean a continuous map $f : X \to Y$ such that $f(x) \in \varphi(x)$ for any $x \in X$.

If $A \subseteq B$, then $A \hookrightarrow B$ is homotopy *n*-trivial provided that for any $0 \le k \le n$, every continuous map $f_0: S^k \to A$ admits a continuous extension $f: D^{k+1} \to B$, i.e. $f(x) = f_0(x)$ for any $x \in S^k$, where S^k and D^{k+1} stand for a unit sphere and a closed ball in \mathbb{R}^{k+1} . A map φ has *acyclic* values if $\check{H}^q(\varphi(x)) \approx \check{H}^q(pt)$ for any $q \in \mathbb{Z}$ and $x \in X$, where \check{H} denotes the Čech cohomology functor and pt is a one point space. In particular, if for any $x \in X$, $\varphi(x)$ is convex, contractible, cell-like, then for any $n = 0, 1, 2, \ldots, \varphi(x) \in UV^n$, and hence φ has acyclic values [10,3].

It is well known that approximation methods are helpful in the study of fixed points or equilibria of set-valued maps. However in the context of our problem we would like to look for a graph approximation $f: M \to E$ of φ satisfying the additional tangency condition: $f(x) \in C_M(x)$ for any $x \in M$. In [11, Th. 2.1] we have obtained a useful result in this direction. Below we recall an appropriate version of this result convenient for our purposes (comp. [11, Cor. 2.2, Rem. 2.3], [5,12]).

Theorem 1.1. Let $n \ge 0$, X be a metric space, E be a Banach space, $\varphi : X \multimap E$ be upper semicontinuous with compact values, $C : X \multimap E$ be lower semicontinuous with closed and convex values. Then for any open neighborhood \mathcal{U} of $Gr(\varphi)$, there is a continuous selection $f : X \to E$ of C such that $Gr(f) \subset \mathcal{U}$ provided that $\dim(X) \le n + 1^2$ and the following conditions hold:

- (*T*) for any $x \in X$, $\varphi(x) \cap C(x) \neq \emptyset$,
- (C_n) for any $x \in X$, for any open neighborhood U of $\varphi(x)$, there are an open neighborhood $V \subset U$ of $\varphi(x)$ and an open neighborhood W of x such that for any $y \in W$ the inclusion $V \cap C(y) \hookrightarrow U \cap C(y)$ is homotopy *n*-trivial.

If condition (*T*) holds, then (*C_n*) is satisfied provided that φ has convex values. Moreover, if the strong tangency condition is satisfied, i.e. for any $x \in X$, $\varphi(x) \subset C(x)$, then (*C_n*) is equivalent to the condition: $\varphi(x) \in UV^n$ for any $x \in X$ (see [11, Lem. 2.13]).

In what follows we recall notions of tangent cones in a Banach space. Given a closed subset M of a Banach space E, for any $x \in M$, by

$$C_M(x) := \left\{ \nu \mid \limsup_{t \to 0^+, \, x' \to M^X} \frac{d(x' + t\nu, M)}{t} = 0 \right\},$$

we denote the *Clarke tangent cone* to *M* at $x \in M$. It is well known that $C_M(x)$ is closed and convex and if *M* is convex, then $C_M(x) = T_M(x)$ (see [1]).

By $T_M^B(x)$ we denote the Bouligand tangent cone to M at x, i.e.

$$T_M^B(x) := \left\{ \nu \mid \liminf_{t \to 0^+} \frac{d(x+t\nu, M)}{t} = 0 \right\}.$$

¹ Recall that for a subset A of metric space X, $A \in UV^n$ if for any open neighborhood U of A there is an open neighborhood $V \subset U$ of A such that the inclusion $V \hookrightarrow U$ is homotopy *n*-trivial.

 $^{^{2}}$ dim(X) denotes the covering dimension of the metric space X.

Download English Version:

https://daneshyari.com/en/article/6419250

Download Persian Version:

https://daneshyari.com/article/6419250

Daneshyari.com