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We investigate the existence of the second mountain-pass solution to a Robin problem,
where the equation is at critical growth and depends on a positive parameter λ. More
precisely, we determine existence and nonexistence regions for this type of solutions,
depending both on λ and on the parameter in the boundary conditions.
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1. Introduction and main results

Let Ω ⊂ R
n (n � 3) be a smooth and bounded domain and let 2∗ = 2n

n−2 be the critical Sobolev exponent. We consider
the Robin problem⎧⎨⎩−�u = λ(1 + u)2∗−1 in Ω,

u > 0 in Ω,

uν + cu = 0 on ∂Ω,

(1)

where c, λ > 0 and uν denotes the outer normal derivative of u on ∂Ω .
As pointed out in the seminal paper [9], the interest in problems like (1) is due to their similarity to some geometrical

and physical variational problems where a lack of compactness also occurs (recall that the embedding H1(Ω) ⊂ L2∗
(Ω) is

not compact).
A solution uλ to (1) is called minimal if uλ � u a.e. in Ω , for any other solution u to (1). Furthermore, we say that a

solution u is regular if u ∈ L∞(Ω). From [5] we know

Proposition 1. For every c > 0, there exists λ∗ = λ∗(c) > 0 such that:

(i) for 0 < λ < λ∗ problem (1) admits a minimal regular solution uλ;
(ii) for λ = λ∗ problem (1) admits a unique regular solution u∗;

(iii) for λ > λ∗ problem (1) admits no solution.

Furthermore, the map c �→ λ∗(c) is strictly increasing and λ∗(c) → 0, as c → 0.

When c = 0, (1) reduces to the Neumann problem (for which no positive solutions exist), whereas the limit case
c → +∞ may be seen as the Dirichlet problem. Indeed, Proposition 1 includes well-known results for the Dirichlet problem,
see [9,13,16,19].
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Under Dirichlet boundary conditions, due to [9], we know that the equation in (1) admits, besides the minimal so-
lution uλ , a larger mountain-pass solution Uλ (see Section 2 for the definition) for every λ ∈ (0, λ∗

Dir), where λ∗
Dir is the

extremal parameter for the Dirichlet problem. One of the purposes of the present paper is to investigate, for any c > 0 and
λ ∈ (0, λ∗(c)), the existence of a larger mountain-pass solution Uλ to problem (1). This represents a further step towards a
complete description of the set of solutions to (1).

Let H(x) be the mean curvature of ∂Ω at x and let

Hmax := max
x∈∂Ω

H(x). (2)

We show

Theorem 1. Let λ∗(c) be as in Proposition 1. For every c > 0, there exists 0 � Λ(c) < λ∗(c) such that problem (1) admits, besides
the minimal solution uλ , a mountain-pass solution Uλ for any Λ(c) < λ < λ∗(c). Furthermore, the map (0,+∞) � c �→ Λ(c) is
nondecreasing and the following statements hold:

(i) If n = 3 and c > 0 or n � 4 and 0 < c < n−2
2 Hmax , then Λ(c) = 0. Moreover, if n = 4,5, then Λ(n−2

2 Hmax) = 0.

(ii) If n � 4, there exists K = K (Ω) � n−2
2 Hmax such that if c > K , then Λ(c) > 0, Uλ exists up to λ = Λ(c) and does not exist if

0 < λ < Λ(c).

Note that, arguing as in [6], any mountain-pass solution to (1) is regular. Hence, by elliptic regularity, it solves (1) in a
classical sense.

When Λ(c) > 0, one may wonder if different kinds of solutions exist for λ ∈ (0,Λ(c)). If Ω = B , the unit ball, in [5]
explicit radial solutions to (1) have been determined for every λ ∈ (0, λ∗(c)). We briefly recall their construction. For c > 0
and η > η0(c), where

η0(c) := max

{
0,

n − 2

c
− 1

}
(3)

consider the function

ϕ(η) := [n(n − 2)]n−2

c4

[c(1 + η) − n + 2]4ηn−2

(1 + η)2n
. (4)

It is readily seen that ϕ(η0) = 0 = limη→+∞ ϕ(η), that ϕ attains a global maximum at

η := n + 2 + √
(n + 2)2 − 4c(n − 2 − c)

2c
,

that ϕ increases on (η0, η) and decreases on (η,+∞). Hence, for any λ ∈ (0, λn(c)), where λn(c) := (ϕ(η))1/(n−2) ,

there exist ηi = ηi(λ, c) (i = 1,2) such that ϕ(ηi) = λn−2. (5)

If λ = λn(c), then η1 = η2 = η. Finally, we recall by [5]

Proposition 2. Let Ω = B ⊂ R
n (n � 3). Then, if λn(c) > 0 and η0 < η2 � η � η1 are defined as in (5), we have

(i) for every λ ∈ (0, λn(c)), there exist two radial solutions of problem (1), the minimal solution uη1 and a larger solution uη2 , given
by

uηi (x) =
(

n(n − 2)ηi

λ

)(n−2)/4(
ηi + |x|2)−(n−2)/2 − 1, i = 1,2;

(ii) the extremal parameter satisfies λ∗(c) = λn(c) and the extremal solution u∗ of (1) is given by u∗(x) := uη(x).

Letting c → +∞ in Proposition 2, one recovers known results for the corresponding Dirichlet problem, see [16, Section 5].
In particular, λn(c) ↗ λ∗

Dir , see also [19, Section VI].
In Section 4 we show that the larger solution uη2 in Proposition 2 has high energy when c > n−2

2 and λ is sufficiently
small. Combining this with the fact that uη1 and uη2 are the only radial solutions to (1), we prove

Theorem 2. Let Ω = B ⊂ R
n (n � 3) and λn(c) be as in Proposition 2. Then

(i) if 0 < c � n−2
2 , problem (1) admits, besides the minimal solution, a radial mountain-pass solution Uλ for every 0 < λ < λn(c);
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