

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

On the second solution to a critical growth Robin problem

Elvise Berchio

Dipartimento di Matematica del Politecnico, Piazza L. da Vinci 32, 20133 Milano, Italy

ARTICLE INFO

Article history: Received 28 March 2011 Available online 28 December 2011 Submitted by P.J. McKenna

Keywords: Critical growth Robin conditions Mountain-pass

ABSTRACT

We investigate the existence of the second mountain-pass solution to a Robin problem, where the equation is at critical growth and depends on a positive parameter λ . More precisely, we determine existence and nonexistence regions for this type of solutions, depending both on λ and on the parameter in the boundary conditions.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction and main results

Let $\Omega \subset \mathbb{R}^n$ $(n \geqslant 3)$ be a smooth and bounded domain and let $2^* = \frac{2n}{n-2}$ be the critical Sobolev exponent. We consider the Robin problem

$$\begin{cases}
-\Delta u = \lambda (1+u)^{2^*-1} & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u_v + cu = 0 & \text{on } \partial\Omega,
\end{cases}$$
(1)

where c, $\lambda > 0$ and u_{ν} denotes the outer normal derivative of u on $\partial \Omega$.

As pointed out in the seminal paper [9], the interest in problems like (1) is due to their similarity to some geometrical and physical variational problems where a lack of compactness also occurs (recall that the embedding $H^1(\Omega) \subset L^{2^*}(\Omega)$ is not compact).

A solution u_{λ} to (1) is called *minimal* if $u_{\lambda} \leq u$ a.e. in Ω , for any other solution u to (1). Furthermore, we say that a solution u is *regular* if $u \in L^{\infty}(\Omega)$. From [5] we know

Proposition 1. For every c > 0, there exists $\lambda^* = \lambda^*(c) > 0$ such that:

- (i) for $0 < \lambda < \lambda^*$ problem (1) admits a minimal regular solution u_{λ} ;
- (ii) for $\lambda = \lambda^*$ problem (1) admits a unique regular solution u^* ;
- (iii) for $\lambda > \lambda^*$ problem (1) admits no solution.

Furthermore, the map $c \mapsto \lambda^*(c)$ is strictly increasing and $\lambda^*(c) \to 0$, as $c \to 0$.

When c=0, (1) reduces to the Neumann problem (for which no positive solutions exist), whereas the limit case $c \to +\infty$ may be seen as the Dirichlet problem. Indeed, Proposition 1 includes well-known results for the Dirichlet problem, see [9,13,16,19].

E-mail address: elvise.berchio@polimi.it.

Under Dirichlet boundary conditions, due to [9], we know that the equation in (1) admits, besides the minimal solution u_{λ} , a larger mountain-pass solution U_{λ} (see Section 2 for the definition) for every $\lambda \in (0, \lambda_{Dir}^*)$, where λ_{Dir}^* is the extremal parameter for the Dirichlet problem. One of the purposes of the present paper is to investigate, for any c > 0 and $\lambda \in (0, \lambda^*(c))$, the existence of a larger mountain-pass solution U_{λ} to problem (1). This represents a further step towards a complete description of the set of solutions to (1).

Let H(x) be the mean curvature of $\partial \Omega$ at x and let

$$H_{\max} := \max_{x \in \partial \Omega} H(x). \tag{2}$$

We show

Theorem 1. Let $\lambda^*(c)$ be as in Proposition 1. For every c > 0, there exists $0 \le \Lambda(c) < \lambda^*(c)$ such that problem (1) admits, besides the minimal solution u_{λ} , a mountain-pass solution U_{λ} for any $\Lambda(c) < \lambda < \lambda^*(c)$. Furthermore, the map $(0, +\infty) \ni c \mapsto \Lambda(c)$ is nondecreasing and the following statements hold:

- (i) If n=3 and c>0 or $n\geqslant 4$ and $0< c<\frac{n-2}{2}H_{\text{max}}$, then $\Lambda(c)=0$. Moreover, if n=4,5, then $\Lambda(\frac{n-2}{2}H_{\text{max}})=0$. (ii) If $n\geqslant 4$, there exists $K=K(\Omega)\geqslant \frac{n-2}{2}H_{\text{max}}$ such that if c>K, then $\Lambda(c)>0$, U_{λ} exists up to $\lambda=\Lambda(c)$ and does not exist if $0 < \lambda < \Lambda(c)$.

Note that, arguing as in [6], any mountain-pass solution to (1) is regular. Hence, by elliptic regularity, it solves (1) in a

When $\Lambda(c) > 0$, one may wonder if different kinds of solutions exist for $\lambda \in (0, \Lambda(c))$. If $\Omega = B$, the unit ball, in [5] explicit radial solutions to (1) have been determined for every $\lambda \in (0, \lambda^*(c))$. We briefly recall their construction. For c > 0and $\eta > \eta_0(c)$, where

$$\eta_0(c) := \max\left\{0, \frac{n-2}{c} - 1\right\}$$
(3)

consider the function

$$\varphi(\eta) := \frac{[n(n-2)]^{n-2}}{c^4} \frac{[c(1+\eta) - n + 2]^4 \eta^{n-2}}{(1+\eta)^{2n}}.$$
(4)

It is readily seen that $\varphi(\eta_0) = 0 = \lim_{\eta \to +\infty} \varphi(\eta)$, that φ attains a global maximum at

$$\overline{\eta}:=\frac{n+2+\sqrt{(n+2)^2-4c(n-2-c)}}{2c},$$

that φ increases on $(\eta_0, \overline{\eta})$ and decreases on $(\overline{\eta}, +\infty)$. Hence, for any $\lambda \in (0, \lambda_n(c))$, where $\lambda_n(c) := (\varphi(\overline{\eta}))^{1/(n-2)}$,

there exist
$$\eta_i = \eta_i(\lambda, c)$$
 $(i = 1, 2)$ such that $\varphi(\eta_i) = \lambda^{n-2}$. (5)

If $\lambda = \lambda_n(c)$, then $\eta_1 = \eta_2 = \overline{\eta}$. Finally, we recall by [5]

Proposition 2. Let $\Omega = B \subset \mathbb{R}^n$ $(n \ge 3)$. Then, if $\lambda_n(c) > 0$ and $\eta_0 < \eta_2 \le \overline{\eta} \le \eta_1$ are defined as in (5), we have

(i) for every $\lambda \in (0, \lambda_n(c))$, there exist two radial solutions of problem (1), the minimal solution u_{η_1} and a larger solution u_{η_2} , given

$$u_{\eta_i}(x) = \left(\frac{n(n-2)\eta_i}{\lambda}\right)^{(n-2)/4} (\eta_i + |x|^2)^{-(n-2)/2} - 1, \quad i = 1, 2;$$

(ii) the extremal parameter satisfies $\lambda^*(c) = \lambda_n(c)$ and the extremal solution u^* of (1) is given by $u^*(x) := u_{\bar{\eta}}(x)$.

Letting $c \to +\infty$ in Proposition 2, one recovers known results for the corresponding Dirichlet problem, see [16, Section 5]. In particular, $\lambda_n(c) \nearrow \lambda_{Dir}^*$, see also [19, Section VI].

In Section 4 we show that the larger solution u_{η_2} in Proposition 2 has high energy when $c > \frac{n-2}{2}$ and λ is sufficiently small. Combining this with the fact that u_{η_1} and u_{η_2} are the only radial solutions to (1), we prove

Theorem 2. Let $\Omega = B \subset \mathbb{R}^n$ $(n \ge 3)$ and $\lambda_n(c)$ be as in Proposition 2. Then

(i) if $0 < c \le \frac{n-2}{2}$, problem (1) admits, besides the minimal solution, a radial mountain-pass solution U_{λ} for every $0 < \lambda < \lambda_n(c)$;

Download English Version:

https://daneshyari.com/en/article/6419270

Download Persian Version:

https://daneshyari.com/article/6419270

<u>Daneshyari.com</u>