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DWT. For the sake of numerical efficiency, we truncate the transformed matrix to be a
sparse matrix by letting the small values be zero. To combine the advantages of the direct

&le)gfj method and the iterative method, we solve the sub-systems appropriately based on the
Sparsity multi-level block structure of the transformed matrix after DWT. Numerical examples show
Linear system that the proposed method is very numerically effective.

Jacobi method © 2011 Elsevier Inc. All rights reserved.

1. Introduction
Numerous problems in science and engineering give rise to the linear system

Ax=b, (11)

where A € RN*N x b € RN, x denotes the unknown vector, b is a given vector and R denotes the set of real numbers.
Usually, there are two types of methods to solve the linear system (1.1), the direct methods and the iterative methods.
Direct methods, such as the Gaussian elimination and LU factorization method, compute the exact solution after finite steps.
However, the computational complexity of the direct method is usually too high for large scale linear systems. The iterative
methods, such as the Jacobi method and Gauss-Seidel method, are more suitable for large sparse linear systems, which gain
a good approximation of the exact solution [3,12,19].

Wavelet analysis is an important tool in many areas such as image processing, signal analysis and scientific computing
[5,7-9,14,16]. The ability to give a sparse representation of data makes it a tool of increasing importance. Discrete wavelet
transform (DWT) is the discrete variant of the wavelet transform. A matrix after two-dimensional (2-D) DWT has a special
block structure. The upper left block of the transformed matrix corresponds to the approximation coefficients (low frequency
information) which keep the most important information. The remaining blocks correspond to details coefficients (high
frequency information) which possess small values almost close to zero. The upper left block is a coarse version of the
original matrix. For example, we consider the “cameraman” image in Fig. 1(a) as the matrix A. The first and second level
wavelet decomposition are presented in Fig. 1(b) and (c). As it can be seen, after DWT, the main information of transformed
matrix are concentrated on the upper left block.
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Fig. 1. (a) Original “cameraman” image; (b) The first level wavelet decomposition; (c) The second level wavelet decomposition.

Exploiting such a block structure, several numerical methods have been developed to solve the linear system (1.1) in
recent years. For the direct method based on DWT, a multiresolution LU factorization method was proposed based on non-
stand DWT in [11]. Using the upper left block as a coarse grid, wavelet algebraic multigrid (WAMG) methods were proposed
recently [6,10,13,18,20]. However, the numerical methods mentioned above have not utilized the sparsity of the data after
DWT.

In this paper, we develop a fast block Jacobi method based on the special block structure and sparsity of the transformed
matrix after DWT. In order to make the transformed matrix sparser, we truncate the small values to be zero. The error
between the approximate solution and the exact solution is controlled by the truncation. Furthermore, in order to improve
the numerical efficiency, we solve the sub-systems in different ways. We solve the small sub-systems with low frequency
information exactly by a direct method, and solve the large sparse sub-systems with high frequency information approxi-
mately by an iterative method. Numerical examples show that the proposed method is numerical effective and combines
the advantages of the direct method and the iterative method.

This paper is organized as follows. Section 2 gives a short review of discrete wavelet transform. In Section 3, we develop
a block Jacobi method based on wavelet truncation, and analyze the convergence. In Section 4, numerical examples are
presented to illustrate the efficiency of the proposed method. Finally, in Section 5, we draw our conclusion.

2. Discrete wavelet transform

In this section, we give a short review of the discrete wavelet transform (cf. [15]). In practice, DWT can be understood
as the application of a pair of filters: low-pass filters derived from the scaling function and high-pass filters derived from
the wavelet function.

Let G be a low-pass filter which is determined by coefficients {g,-}iL:_o1 and H be a high-pass filter which is determined
by coefficients {h,-}f;ol. They are filters of length L and order L — 1. In this paper, we concentrate on orthogonal wavelets
which are the most popular group of wavelets. Then, the filter coefficients must satisfy h; = (—1)ig;_1_; for i=0,...,L—1
in order to obtain a reversible DWT.

The discrete signal in one dimension (1-D) can be represented by a vector v. Let the length of v be N =2", where n is a
positive integer. Then, the one-level DWT over v can be carried out by convolving v with filters G and H respectively, getting
two sequences of length N. Next, by the elimination of one out of two samples (sub-sampling), two resulting sequences of
length % are obtained: a sequence {d;} of details coefficients (wavelet coefficients) and a sequence {a;} of coefficients called
approximation coefficients. The approximation coefficients keep the most important information of v, whereas most of the
elements of the details coefficients are very small. The 1-D DWT over a vector is equivalent to the multiplication of vector

by matrix. Let G € R>*N be a matrix defined by coefficients {g,—}iL:_o1 as follows

8gL-1 812 8L-3 - & 8 - e 0
c 0 0 g1 &2 &3 - & & - 0
gL-3 - 81 8o o - - 0 g1 g2
The matrix H is defined in the similar way with coefficients {h,-}l.L:_(}. And the coefficients {h,~},.L:_01 satisfy h; = (=1){g;_1_;
for i=0,...,L — 1. The transform matrix W, € RN*N is defined as follows
G
w[§]. o

The nonzero entries of G correspond to low-pass filters, and those of H correspond to high-pass filters. Multiplying vector v
by matrix W,, we have
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