FISEVIER

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Uniqueness and value distribution of differences of entire functions \(\frac{1}{2} \)

Xiaoguang Qi a,b,*, Kai Liu c

- ^a School of Mathematics, Shandong University, Jinan, Shandong 250100, PR China
- ^b Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland
- ^c Department of Mathematics, Nanchang University, Nanchang, Jiangxi 330031, PR China

ARTICLE INFO

Article history: Received 23 September 2010 Available online 24 December 2010 Submitted by Steven G. Krantz

Keywords: Entire functions Uniqueness Difference Shift Sharing value

ABSTRACT

We consider the existence of transcendental entire solutions of certain type of non-linear difference equations. As an application, we investigate the value distribution of difference polynomials of entire functions. In particular, we are interested in the existence of zeros of $f^n(z)(\lambda f^m(z+c)+\mu f^m(z))-a$, where f is an entire function, n, m are two integers such that $n\geqslant m>0$, and λ , μ are non-zero complex numbers. We also obtain a uniqueness result in the case where shifts of two entire functions share a small function.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

A meromorphic function means meromorphic in the whole complex plane. We say that two meromorphic functions f and g share a finite value a IM (ignoring multiplicities) when f-a and g-a have the same zeros. If f-a and g-a have the same zeros with the same multiplicities, then we say that f and g share the value a CM (counting multiplicities). We assume that the reader is familiar with the standard symbols and fundamental results of Nevanlinna theory, as found in [7,18]. We use $\sigma(f)$ to denote the order of f and $N_p(r, \frac{1}{f-a})$ to denote the counting function of the zeros of f-a, where an m-fold zero is counted m times if $m \le p$ and p times if m > p. For a small function a related to f, we define

$$\delta(a, f) = \liminf_{r \to \infty} \frac{m(r, \frac{1}{f - a})}{T(r, f)}.$$

Recently, Yang and Laine [19] considered the existence of the solutions of a non-linear differential-difference equation of the form

$$f^n + L(z, f) = h, (1)$$

where L(z, f) is a linear differential-difference polynomial in f. They obtained the following result.

Theorem A. (See [19, Theorem 3.4].) Let P, Q be polynomials. Then a non-linear difference equation

$$f(z)^{2} + P(z) f(z+1) = Q(z)$$

has no transcendental entire solution of finite order.

[☆] This work was supported by the NNSF of China (No. 10671109).

^{*} Corresponding author at: School of Mathematics, Shandong University, Jinan, Shandong 250100, PR China. E-mail addresses: xiaogqi@mail.sdu.edu.cn (X. Qi), liukai418@126.com (K. Liu).

Theorem B. (See [19, Theorem 3.5].) A non-linear difference equation

$$f(z)^3 + P(z)f(z+1) = c\sin bz$$
 (2)

where P(z) is a non-constant polynomial and $b, c \in \mathbb{C}$ are non-zero constants, does not admit entire solutions of finite order. If P(z) = p is a non-zero constants, then (2) possesses three distinct entire solution of finite order, provided $b = 3n\pi$ and $p^3 = (-1)^{n+1} \frac{27}{4} c^2$ for a non-zero integer n.

Laine and Yang [9] continued to consider the non-existence of transcendental entire solutions of non-linear differential equations of type

$$f^{n} + P_{d}(f) = p_{1}e^{a_{1}z} + p_{2}e^{a_{2}z}, (3)$$

and obtained new results which complementing the theorems given by Li and Yang [10,11].

Theorem C. (See [9, Theorem 3.1].) Let $n \ge 3$ be an integer and $P_d(f)$ be a differential polynomial in f of total degree $d \le n-2$ with polynomial coefficients such that $P_d(0) = 0$. Provided that p_1 , p_2 are non-vanishing polynomials and a_1 , a_2 are distinct non-zero complex constants, then (3) has no transcendental entire solutions.

Laine and Yang [9] pointed out that a similar conclusion could be proved if the differential polynomial $P_d(f)$ is replaced with a differential-difference polynomial. However, Theorems A, B and C, the degree of the differential-difference polynomial is less than n. Now, we consider the equal-case, we get the following results.

Theorem 1. Let a, c be non-zero constants, n and m be integers satisfying $n \ge m > 0$, $\lambda \ne 0$ be a complex number and let P(z), Q(z) be polynomials. If $n \ge 2$, then the difference equation

$$f(z)^{n+m} + \lambda f(z)^n f(z+c)^m = P(z)e^{Q(z)} + a$$
(4)

has no transcendental entire solutions of finite order.

Remark. It seems to us that replacing $f(z)^n f(z+c)^m$ with $f(z)^n \sum_{j=1}^m f(z+c_j)$ and $c_j \neq 0$, or replacing the non-zero value a with $a(z) \not\equiv 0$, where a(z) is a polynomial in z, the same conclusion can be proved.

Let f be a transcendental meromorphic function, and let n be a positive integer. Reminiscent to the value distributions of f^nf' , Hayman [5, Corollary to Theorem 9] proved that f^nf' takes every non-zero complex value infinitely often if $n \geqslant 3$. Mues [15, Satz 3] proved that $f^2f'-1$ has infinitely many zeros. Later on, Bergweiler and Eremenko [1, Theorem 2] showed that ff'-1 has infinitely many zeros also. Corresponding to the results above, Laine and Yang [8, Theorem 2] investigated the value distribution of difference products of entire functions.

Theorem D. (See [8, Theorem 2].) Let f be a transcendental entire function with finite order, and let c be a non-zero complex constant. Then, for $n \ge 2$, $f(z)^n f(z+c)$ assumes every non-zero value $a \in \mathbf{C}$ infinitely often.

Some improvements of Theorem D can be found in [12,13]. In the present paper, we consider the value distribution of $f(z)^n(\lambda f(z+c)^m + \mu f(z)^m)$, where n, m are non-negative integers, and λ , μ are non-zero complex numbers. We obtain the following result which generalize some theorems in [8,12,13].

Theorem 2. Let f be a transcendental entire function with finite order, c be a non-zero constant, n and m be integers satisfying $n \ge m > 0$, and let λ , μ be two complex numbers such that $|\lambda| + |\mu| \ne 0$. If $n \ge 2$, then either $f(z)^n (\lambda f(z+c)^m + \mu f(z)^m)$ assumes every non-zero value $a \in \mathbf{C}$ infinitely often or $f(z) = e^{\frac{\log t}{c} Z} g(z)$, where $t = (-\frac{\mu}{\lambda})^{\frac{1}{m}}$, and g(z) is periodic function with period c.

Remarks. (1) If m = 0 and $\lambda + \mu \neq 0$, then $(\lambda + \mu) f^n$ assumes every non-zero value $a \in \mathbb{C}$ infinitely often provided that $n \geq 2$.

- (2) It seems to us that replacing the non-zero value $a \in \mathbf{C}$ with $a(z) \not\equiv 0$, where a(z) is a polynomial in z, a similar conclusion can be proved.
- (3) When m > n > 0. If $\lambda \mu = 0$ and $|\lambda| + |\mu| \neq 0$, $m \geqslant 2$, then Theorem 2 holds. Unfortunately, when $\lambda \mu \neq 0$, $m \geqslant 2$, we do not know whether Theorem 2 holds.
- (4) When $\lambda \mu \neq 0$, m=1 and n=0, we can give a counterexample. Namely, let $f(z)=z+e^z$, $\lambda=1$ and $\mu=-1$. Then f(z+c)-f(z)=c, where $c=2\pi i$. Clearly, $f(z)^n(\lambda f(z+c)^m+\mu f(z)^m)$ cannot assume every non-zero value $a\in {\bf C}$ infinitely often.

Download English Version:

https://daneshyari.com/en/article/6419433

Download Persian Version:

 $\underline{https://daneshyari.com/article/6419433}$

Daneshyari.com