

Contents lists available at ScienceDirect Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Spike-layer solutions to singularly perturbed semilinear systems of coupled Schrödinger equations

Zhongwei Tang¹

School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, PR China

ARTICLE INFO

Article history: Received 10 August 2010 Available online 5 November 2010 Submitted by Steven G. Krantz

Keywords: Coupled nonlinear Schrödinger equations Least energy solutions Spikes Neumann boundary condition

ABSTRACT

Let Ω be a bounded domain in \mathbb{R}^N ($N \leq 3$), we are concerned with the interaction and the configuration of spikes in a double condensate by analyzing the least energy solutions of the following two couple Schrödinger equations in Ω

$$\begin{cases} -\varepsilon^2 \Delta u + u = \mu_1 u^3 + \beta u v^2, \\ -\varepsilon^2 \Delta v + v = \mu_2 v^3 + \beta u^2 v, \\ u > 0, \quad v > 0. \end{cases}$$
(S_\varepsilon)

where μ_1, μ_2 are positive constants. We prove that under Neumann or Dirichlet boundary conditions, for any $\varepsilon > 0$, when $-\infty < \beta < \min\{\mu_1, \mu_2\}$ or $\beta > \max\{\mu_1, \mu_2\}$, system (S_{ε}) has a least energy solution $(u_{\varepsilon}, v_{\varepsilon})$ and when $\min\{\mu_1, \mu_2\} < \beta < \max\{\mu_1, \mu_2\}$, system (S_{ε}) has no solution. Suppose $P_{\varepsilon}, Q_{\varepsilon}$ are the local maximum points of $u_{\varepsilon}, v_{\varepsilon}$ respectively. Then under Neumann boundary conditions, as ε small enough, both of $P_{\varepsilon}, Q_{\varepsilon}$ locate on the boundary of Ω . Furthermore, when $\beta \ge 0$, $\frac{|P_{\varepsilon} - Q_{\varepsilon}|}{\varepsilon} \to 0$ as $\varepsilon \to 0$ and for N = 2 and N = 3, $P_{\varepsilon}, Q_{\varepsilon}$ converge to the same point on the boundary which is the maximum point of mean curvature of the boundary. However, when $\beta < 0$, $\frac{|P_{\varepsilon} - Q_{\varepsilon}|}{\varepsilon} \to \infty$ as $\varepsilon \to 0$ and suppose $P_{\varepsilon} \to P$ and $Q_{\varepsilon} \to Q$, then for N = 2 and N = 3, P, Q must be the maximum point of the mean curvature on the boundary and P, Q might be a same point if the mean curvature of the boundary has only one maximum point. Under Dirichlet boundary conditions, we can prove that as long as the least energy solution (S_{ε}) exists, the same asymptotic behavior of the least energy solution $(u_{\varepsilon}, v_{\varepsilon})$ holds as described in Lin and Wei (2005) [10] for $\beta > 0$ or for $\beta < 0$, thus our results are an extension of the results in Lin and Wei (2005) [10].

 $\ensuremath{\mathbb{C}}$ 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^N ($N \leq 3$), we are concerned with the following two couple Schrödinger equations in $H^1(\Omega) \times H^1(\Omega)$ (or $H^1_0(\Omega) \times H^1_0(\Omega)$)

$$\begin{cases} -\varepsilon^2 \Delta u + u = \mu_1 u^3 + \beta u v^2, \\ -\varepsilon^2 \Delta v + v = \mu_2 v^3 + \beta u^2 v, \\ u > 0, \quad v > 0, \end{cases}$$

 (S_{ε})

E-mail address: tangzw@bnu.edu.cn.

¹ Supported by the Alexander von Humboldt foundation and NSFC (10801013).

⁰⁰²²⁻²⁴⁷X/\$ - see front matter © 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2010.11.001

under Neumann (or Dirichlet) boundary conditions, where μ_1, μ_2 are positive constants and without loss of generality we assume $\mu_1 \leq \mu_2, \beta \in \mathbb{R}^N, \varepsilon > 0$ is the parameter.

For $\Omega = \mathbb{R}^N$ and $\varepsilon = 1$, (S_{ε}) leads to investigate the following problem in \mathbb{R}^N

$$\begin{cases} -\Delta u + u = \mu_1 u^3 + \beta u v^2, \\ -\Delta v + v = \mu_2 v^3 + \beta u^2 v, \\ u > 0, \quad v > 0, \\ u(x) \to 0, \quad v(x) \to 0 \quad \text{as } |x| \to \infty. \end{cases}$$

$$(1.1)$$

Problem (1.1) arises in the Hartree–Fock theory for a double condensate i.e. a binary mixture of Bose–Einstein condensate in two different hyperfine states $|1\rangle$ and $|2\rangle$ (see [9]). Physically, *u* and *v* are the corresponding condensate amplitudes, μ_j and β are the intraspecies and interspecies scattering lengths. The sign of the scattering length β determines whether the interactions of states $|1\rangle$ and $|2\rangle$ are repulsive or attractive. When $\beta > 0$, the interactions of states $|1\rangle$ and $|2\rangle$ are repulsive. In contrast, when $\beta < 0$, the interactions of states $|1\rangle$ and $|2\rangle$ are attractive.

Recently, B. Sirakov [13] discussed the whole $\beta \in \mathbb{R}$ and analyzed for which β problem (1.1) assures a least energy solution and for which β problem (1.1) has no least energy solution.

When the domain in (1.1) is replaced by a symmetric domain (possibly unbounded), T. Bartsch, N. Dancer and Z.Q. Wang [4] investigated the local and global bifurcation in terms of the parameter β which provides a-priori bounds of solution branches.

We also refer the readers to Antonio Ambrosetti and Eduardo Colorado [1,2] for the bound states of Schrödinger equations and T. Bartsch, Z.Q. Wang and J. Wei [5], T. Lin and J. Wei [11,12], J. Wei and T. Weth [14,15], L.A. Maia, E. Nontefusco and B. Pellacci [3] for the bound states of Schrödinger systems.

In particular, T. Lin and J. Wei [10] considered (S_{ε}) under Dirichlet boundary conditions, they obtained the existence of the least energy solution to (S_{ε}) by minimizing the certain Nehari manifold for $-\infty < \beta < \beta_0$ and also discussed the asymptotic behavior as ε goes to zero, where $0 < \beta_0 < \sqrt{\mu_1 \mu_2}$ is a constant depending only on *n*. More precisely, they pointed out that when $\beta < 0$, the maximum points of the two components of the least energy solution to (S_{ε}) approach different points as $\varepsilon \to 0$ whereas when $0 < \beta < \beta_0$, the maximum points of the two components of the least energy solution to (S_{ε}) go together as $\varepsilon \to 0$.

In present paper, we firstly consider (S_{ε}) under the Neumann boundary conditions, namely we consider the following problem in $H^1(\Omega) \times H^1(\Omega)$

$$\begin{cases} -\varepsilon^{2}\Delta u + u = \mu_{1}u^{3} + \beta uv^{2}, \\ -\varepsilon^{2}\Delta v + v = \mu_{2}v^{3} + \beta u^{2}v, \\ u > 0, \quad v > 0, \\ \frac{\partial u}{\partial n} = 0, \quad \frac{\partial v}{\partial n} = 0, \quad \text{on } \partial\Omega, \end{cases}$$

$$(S_{\varepsilon}^{1})$$

where $\frac{\partial}{\partial n}$ denotes the external normal derivative on the boundary.

A solution (u, v) of (S_{ε}^1) which has a zero component $(u \equiv 0 \text{ or } v \equiv 0)$ will be called a standard solution. (0, 0) is referred as the trivial solution of (S_{ε}^1) . We are concerned on the nonstandard solutions of (S_{ε}^1) and also their asymptotic behavior as ε approaches zero.

The energy functional corresponding to (S_{ε}^{1}) is as follows:

$$J_{\varepsilon}(u,v) := \frac{1}{2} \int_{\Omega} \left[\varepsilon^2 |\nabla u|^2 + u^2 + \varepsilon^2 |\nabla v|^2 + v^2 \right] dx - \frac{1}{4} \int_{\Omega} \left(\mu_1 u^4 + \mu_2 v^4 + 2\beta u^2 v^2 \right) dx, \tag{1.2}$$

for every $(u, v) \in H^1(\Omega) \times H^1(\Omega)$.

As in [10], we consider the set

$$\mathcal{N}(\varepsilon,\Omega) \coloneqq \left\{ (u,v) \in H^1(\Omega) \times H^1(\Omega), \ u \geqq 0, \ v \geqq 0; \ \int_{\Omega} [\varepsilon^2 |\nabla u|^2 + u^2] = \int_{\Omega} [\mu_1 u^4 + \beta u^2 v^2] \right\}$$

and let

$$c_{\varepsilon} = \inf_{(u,v) \in \mathcal{N}(\varepsilon,\Omega)} J_{\varepsilon}(u,v).$$

Our first results deal with the existence of least energy solutions of (S_{ε}^{1}) which achieve c_{ε} .

Theorem 1.1. For any $\varepsilon > 0$, if $-\infty < \beta < \min\{\mu_1, \mu_2\}$ or $\beta > \max\{\mu_1, \mu_2\}$, there exists a least energy solution $(u_{\varepsilon}, v_{\varepsilon})$ to system (S_{ε}^1) which achieves c_{ε} . If $\min\{\mu_1, \mu_2\} < \beta < \max\{\mu_1, \mu_2\}$, (S_{ε}^1) has no solution. In fact, suppose ω_{ε} is a least energy solution

Download English Version:

https://daneshyari.com/en/article/6419511

Download Persian Version:

https://daneshyari.com/article/6419511

Daneshyari.com