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a b s t r a c t 

A fractal oscillatority of solutions of second-order differential equations near infinity is 

measured by oscillatory and phase dimensions. The phase dimension is defined as a box 

dimension of the trajectory (x, ˙ x ) in R 

2 of a solution x = x (t) , assuming that (x, ˙ x ) is a 

spiral converging to the origin. In this work, we study the phase dimension of the class 

of second-order nonautonomous differential equations with oscillatory solutions including 

the Bessel equation. We prove that the phase dimension of Bessel functions is equal to 4/3, 

for each order of the Bessel function. A trajectory is a wavy spiral, exhibiting an interesting 

oscillatory behavior. The phase dimension of a generalization of the Bessel equation has 

been also computed. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction and motivation 

Usage of fractal dimension theory in dynamics has evolved into an independent field of mathematics. Main goal is mea- 

suring complexity of invariant sets and measures, using fractal dimensions. Fractal dimensions provide a better insight into 

the dynamics that appear in various problems in physics, meteorology, geology, chemistry, medicine, ecology, and also in 

engineering, economics, computer science and image processing, as well as in many other branches of mathematics. 

Over the years, in mathematics, fractal dimension has been successfully used in studying, for instance, Smale horseshoe, 

logistic map, Julia and Mandelbrot sets, Lorenz and Hénon attractors, infinite-dimensional dynamical systems, in probability 

theory, and spiral trajectories, see [1] . 

Fractal dimensions important for dynamics include, among other dimensions, the Hausdorff dimension and the box di- 

mension. Unlike the Hausdorff dimension, the box dimension is better suited for distinguishing between non-rectifiable 

smooth curves. Box dimension of a planar curve lying in a neighborhood of some point measures the “amount” of accumu- 

lation of the curve in the neighborhood of that point. Generally, the box dimension of this curve is a real number from the 

interval [1,2] . The other widely used fractal dimension, the Hausdorff dimension, does not distinguish smooth non-rectifiable 

curves. Hausdorff dimension is countably stable. Taking into account that each smooth non-rectifiable curve is a countable 

union of rectifiable curves, and the Hausdorff dimension of a rectifiable curve is equal to 1, we see that the Hausdorff

dimension of every non-rectifiable curve is equal to 1. 

Recently, the fractal oscillatority of solutions of different types of second-order linear differential equations has been 

considered by Kwong, Paši ́c, Tanaka and Wong. The Euler type equation has been studied in [2,3] , the Hartman–Wintner 

type equations in [4] , half linear equations in [5] , and finally the Bessel equation in [6] . In this work, the fractal oscillatority 
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is considered in the sense of the oscillatory dimension, at first introduced in Paši ́c et al., [7] . The oscillatory dimension of a 

solution x ( t ) is defined as the box dimension of a graph of function X ( τ ) := x (1/ τ ) near τ = 0 . 

On the other hand, the fractal properties of spiral trajectories of dynamical systems in the phase plane have been studied 

by Žubrini ́c and Županovi ́c, see e.g. [8,9] . From their work the concept of the phase dimension has arisen and has finally 

been introduced in [7] . They adapted standard idea of phase plane analysis to fractal analysis of solutions of second-order 

nonlinear autonomous differential equations. Their results show the connection between phase dimension of trajectories 

near singular points and limit cycles with multiplicity, demonstrated on the standard model for Hopf–Takens bifurcation, 

see [8] . Similarly, the connection between the asymptotics of the Poincaré map of the planar autonomous system with 

strictly imaginary eigenvalues, and the phase dimension of the corresponding trajectories, have been shown, see [9] . 

All these results motivated us to study a fractal connection between the oscillatory and phase dimensions for a class of 

oscillatory functions, see [10] . In that study, we discovered a specific type of spirals with a nondecreasing radius function, 

related to chirp-like solutions of a class of equations considered by Kwong, Paši ́c, Tanaka and Wong, which we call the wavy 

spirals. 

In this article we proved that the phase dimension of Bessel functions is equal to 4/3, for each order of the Bessel 

function. The phase dimension of a generalization of the Bessel equation has been also computed, depending only on the 

parameter introduced in generalization. 

A model for chirp-like behavior of solutions developed in [10] could not handle the specific behavior of Bessel functions, 

so to determine the phase dimension of Bessel functions, in this article we generalize the technique used in [10] . Notice that 

the oscillatory dimension of Bessel functions was already considered in [6] . Here we actually consider some generalization 

of the Bessel equation that is motivated by the generalization introduced in [6] , for whose solutions we determine the phase 

dimension as our main result, Theorem 1 . In order to prove Theorem 1 , we first obtain a new version of some theorems 

from [8] . It is interesting how the phase dimension of solutions depends upon a parameter of this generalization of the 

Bessel equation. The standard Bessel equation, having phase dimension of Bessel functions equal to 4/3, now becomes a 

special case. We have done this work hoping that it could help for better understanding of the oscillatority nature of Bessel 

functions. 

For future work we consider to be interesting to examine the connection between the phase dimension of Bessel func- 

tions, and the number of limit cycles that can be acquired by small perturbation of the Bessel equation. In relation to results 

from [8] , see Remark 1 , in the case of the standard Bessel equation, we expect this number of limit cycles might be 1. 

2. Definitions and notation 

We first introduce some definitions and notation. For A ⊂ R 

N bounded we define the ε-neighborhood of A by 

A ε := { y ∈ R 

N : d(y, A ) < ε} . By the lower s-dimensional Minkowski content of A , s ≥ 0 we mean 

M 

s 
∗(A ) := lim inf 

ε→ 0 

| A ε | 
ε N−s 

, 

and analogously for the upper s-dimensional Minkowski content M 

∗s (A ) . Now we can introduce the lower and upper box 

dimensions of A by 

dim B A := inf { s ≥ 0 : M 

s 
∗(A ) = 0 } 

and analogously dim B A := inf { s ≥ 0 : M 

∗s (A ) = 0 } . If these two values coincide, we call it simply the box dimension of A , 

and denote by dim B A . 

For more details on these definitions see e.g. Falconer [8,11,12] . 

Assume now that x is of class C 1 and t 0 > 0. We say that x is a phase oscillatory function if the following condition holds: 

the set � = { (x (t) , ˙ x (t)) : t ∈ [ t 0 , ∞ ) } in the plane is a spiral converging to the origin. 

By the spiral here we mean the graph of a function r = f (ϕ) , ϕ ≥ ϕ 1 > 0, in polar coordinates, where ⎧ ⎨ ⎩ 

f : [ ϕ 1 , ∞ ) → (0 , ∞ ) is such that f (ϕ) → 0 as ϕ → ∞ , 

f is radially decreasing (i.e., for any fixed ϕ ≥ ϕ 1 

the function N � k 	→ f (ϕ + 2 kπ) is decreasing) . 

(1) 

Depending on the context, by the spiral here we also mean the graph of a function r = g(ϕ) , ϕ ≤ ϕ 

′ 
1 

< 0 , in polar co- 

ordinates, where for h (ϕ) = g(−ϕ) , ∀ ϕ ≥ | ϕ 

′ 
1 | , the graph of a function r = h (ϕ) , ϕ ≥ | ϕ 

′ 
1 | > 0 , given in polar coordinates, 

satisfies (1) . It is easy to see that the spiral given by function g is a mirror image of the spiral given by function h , regarding 

x -axis. We also say that a graph of function r = f (ϕ) , ϕ ≥ ϕ 1 > 0, in polar coordinates, is a spiral near the origin if there 

exists ϕ 2 ≥ ϕ 1 such that a graph of function r = f (ϕ) , ϕ ≥ ϕ 2 is a spiral. 

The phase dimension dim ph (x ) of function x : [ t 0 , ∞ ) → R of class C 1 is defined as the box dimension of the corresponding 

planar curve � = { (x (t) , ˙ x (t)) : t ∈ [ t 0 , ∞ ) } . 
We use a result for the box dimension of spiral � defined by r = ϕ 

−α, ϕ ≥ ϕ 0 > 0, dim B � = 2 / (1 + α) when 

0 < α ≤ 1, see Tricot [13, p. 121] and some generalizations from [8] . 

The phase dimension is a fractal dimension, introduced in the study of chirp-like solutions of second order ODEs, see 

[7] . Fractal dimensions are a well known tool in study of dynamics, see [1] . 
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