On Steiner degree distance of trees

Ivan Gutman ${ }^{\text {a,b,* }}$
${ }^{\text {a }}$ Faculty of Science, University of Kragujevac, Kragujevac, Serbia
${ }^{\mathrm{b}}$ State University of Novi Pazar, Novi Pazar, Serbia

A R T I C L E I N F O

Keywords:

Distance (in graph)
Steiner distance
Degree distance
Wiener index

Abstract

Let G be a connected graph, and u, v, w its vertices. By d_{u} is denoted the degree of the vertex u, by $d(u, v)$ the (ordinary) distance of the vertices u and v, and by $d(u, v, w)$ the Steiner distance of u, v, w. The degree distance $D D$ of G is defined as the sum of terms $\left[d_{u}+d_{v}\right] d(u, v)$ over all pairs of vertices of G. As early as in the 1990s, a linear relation was discovered between $D D$ of trees and the Wiener index. We now consider $S D D$, the Steiner-distance generalization of $D D$, defined as the sum of terms $\left[d_{u}+d_{v}+d_{w}\right] d(u, v, w)$ over all triples of vertices of G. Also in this case, a linear relation between $S D D$ and the Wiener index could be established.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In graph theory applied to chemical problems, a large number of molecular structure descriptors, so-called "topological indices", has been studied [38], aimed as representing certain chemically interesting structural features of the underlying molecules. Many of these descriptors are defined in terms of vertex degrees (for details see [10,17,20,38]) and equally many in terms of distance between vertices (for details see [13,21,38,41]). There are also several degree-and-distance-based topological indices [11,12,38,40]. Among these, the degree distance, put forward by Dobrynin and Kochetova [15], attracted much attention of researchers, and has been subject to a legion of studies; see the recent papers [2-5,16,24,32,33,42] and the references cited therein.

For a graph G with vertex set $V(G)$, the degree distance is defined as [15]

$$
\begin{equation*}
D D=D D(G)=\sum_{\{u, v\} \subseteq V(G)}\left[d_{u}+d_{v}\right] d(u, v) \tag{1}
\end{equation*}
$$

where d_{u} is the degree ($=$ number of first neighbors) of the vertex $u \in V(G)$, and $d(u, v)$ is the distance between the vertices $u, v \in V(G)$ ($=$ the number of edges in a shortest path connecting u and v).

At this point we recall that the Wiener index is defined as

$$
\begin{equation*}
W=W(G)=\sum_{\{u, v\} \subseteq V(G)} d(u, v) \tag{2}
\end{equation*}
$$

For details on the theory of this classical, almost 70 years old, distance-based graph invariant see the surveys [14,35,41] and the recent papers [23,26-28,37]. Observe that if the graph G is regular of degree r, then $D D(G)=2 r W(G)$. In 1947, together

[^0]with the index W also the so-called Wiener polarity index was introduced [39], equal to the number of pairs of vertices at distance 4 ; for more details see $[30,31,43]$ and the references cited therein.

A few years before the paper [15] was published, Schultz considered a seemingly unrelated quantity, which he named "molecular topological index" (MTI). For a graph G of order n whose adjacency and distance matrices are $\mathbf{A}(G)$ and $\mathbf{D}(G)$, respectively, the molecular topological index is defined as [36]

$$
\operatorname{MTI}(G)=\sum_{i=1}^{n}(\mathbf{d}(G)[\mathbf{A}(G)+\mathbf{D}(G)])_{i}
$$

where $\mathbf{d}(G)$ is the column vector of vertex degrees. It is not difficult to verify [19] that

$$
\begin{equation*}
\operatorname{MTI}(G)=D D(G)+\sum_{u \in V(G)} d_{u}^{2} \tag{3}
\end{equation*}
$$

Within the study of MTI, it was noticed [34] that in the case of acyclic graphs, there is a simple linear relation between MTI and the Wiener index, which we state here as:

Theorem 1. Let T be a tree of order n, and let $D D$ and W the topological indices defined via Eqs. (1) and (2). Then

$$
\begin{equation*}
D D(T)=W(T)-n(n-1) . \tag{4}
\end{equation*}
$$

The first mathematical proof of the identity (4) was given by Klein [25]. An independent proof was offered by the present author [19]. All this happened before the publication of the Dobrynin-Kochetova article [15].

In this paper, we first propose a generalization of the degree distance by using the concept of Steiner distance. Then we show that for the three-center Steiner degree distance, a result analogous to Theorem 1 holds.

2. Steiner distance and Steiner degree distances

The Steiner ${ }^{1}$ distance of a graph was put forward in 1989 by Chartrand et al. [7]. It is a natural and consequent generalization of the classical graph distance. For a connected graph G with vertex set $V(G)$, let S be a subset of $V(G)$ containing at least two vertices. Then the Steiner distance $d(S)$ of the vertices in S (or simply the distance of S) is the minimum number of edges of a connected subgraph of G that contains all vertices from S. This subgraph is necessarily a tree (and is referred to as a Steiner tree).

If $S=\{u, v\}$, i.e., if $|S|=2$, then the Steiner distance reduces to the ordinary distance between the vertices u and v, i.e., $d(S) \equiv d(u, v)$. More details on Steiner distance can be found in [1,6,7,18].

Bearing in mind the definition (2) of the Wiener index, it is reasonable to consider a series of its generalizations, namely [8,9,22,29]

$$
S W_{k}(G)=\sum_{\substack{S \subset V(G) \\|S|=k}} d(S) ; \quad k=2,3, \ldots, n
$$

where, of course, $S W_{2}(G) \equiv W(G)$.
In the same manner, starting from Eq. (1), we can construct the generalized versions of the degree distance as

$$
\begin{equation*}
S D D_{k}(G)=\sum_{\substack{S \subseteq V(G) \\|S|=k}}\left[\sum_{v \in S} d_{v}\right] d(S) ; k=2,3, \ldots, n \tag{5}
\end{equation*}
$$

in which case, again, $S D D_{2}$ will coincide with the ordinary degree distance. Observe that if the graph G is regular of degree r, then $S D D_{k}(G)=k r W(G)$.

It is purposeful that $S D D_{k}$ be referred to as the k-center Steiner degree distance. In what follows, we shall be particularly interested in the 3-center Steiner degree distance, which can be expressed as

$$
\operatorname{SDD}_{3}(G)=\sum_{\substack{\{u, v, \backslash \subseteq \in(G) \\|\{u, v, w\}|=3}}\left[d_{u}+d_{v}+d_{w}\right] d(u, v, w)
$$

3. Steiner degree distance of trees

Let G be a connected graph on n vertices, with vertex set $V(G)$. Let e be an edge of G, with x and y being its end-vertices. Divide the vertices of G into three sets:

$$
\mathcal{N}_{1}(e)=\{v \in V(G) \mid d(v, x)<d(v, y)\}
$$

[^1]
https://daneshyari.com/en/article/6419798

Download Persian Version
https://daneshyari.com/article/6419798

Daneshyari.com

[^0]: * Tel.: +33 2123123321.

 E-mail address: gutman@kg.ac.rs

[^1]: ${ }^{1}$ Jakob Steiner (1795-1863), Swiss mathematician.

