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In this paper, an effective numerical method is introduced for the treatment of Volterra 

singular partial integro-differential equations. They are based on the operational and al- 

most operational matrix of integration and differentiation of 2 D shifted Legendre poly- 

nomials. The methods convert the singular partial integro-differential equation in to a 

system of algebraic equations. Convergence analysis and error estimates are derived for 

the proposed method. Illustrative examples are included to demonstrate the validity and 

applicability of the technique. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Volterra type integral equations arise in a variety of science and technology fields [1] . An area of increasing scientific 

interest over the past decades is the study of Volterra integro-differential equation. The theory and application of Volterra 

integro-differential equations play an important role in the mathematical modeling of many fields: physical phenomena, 

biological model, chemical kinetics, engineering science and application in heat flow [12] . Several numerical methods for 

approximating the solution of Volterra integral equations with weakly singular kernel are known [2–10,13] . Also vari- 

ous numerical techniques have been developed for the solution of partial integro-differential equations, see for examples, 

[11,14,15,17–19] . 

The main aim of this paper is to study second kind Volterra singular partial integro-differential equation of the form 

u y = u (x, y ) + f (x, y ) + 

∫ x 

0 

∫ y 

0 

G (u (s, t)) 

(x − s ) α
d td s 0 ≤ s ≤ x, 0 ≤ t ≤ y 

(x, y ) ∈ [0 , 1] × [0 , 1] 

0 < α < 1 (1) 

with initial condition u (x, 0) = u 0 (x ) . 

Where, u is unknown function in �(= [0 , 1] × [0 , 1]) which should be determined and the functions f , u 0 ( x ) are known. 

G is a linear or non-linear differential operator. It can be seen that in above equation the kernel function has a singularity 

at the origin. The functions f ( x , y ) and u ( x , y ) are assumed to be sufficiently smooth in order to guarantee the existence and 

uniqueness of a solution u ∈ C ([0, 1] × [0, 1]). Equations of the form (1) are usually difficult to solve analytically so it is 

required to obtain an efficient approximation or numerical methods. 
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In this paper, numerical solution of (1) is computed by using the 2 D shifted orthogonal Legendre polynomial system. The 

advantage of orthogonal system, proposed in present work is that the Legendre bivariate polynomial provide an accurate 

approximation of the problem solution with reduced number of basis functions. 

This paper is organized as follows: Section 2 represents preliminaries which is devoted to used polynomial and function 

approximation. In this section we introduced 2 D shifted Legendre polynomials and some properties of them. In Section 3 we 

constructed operational matrices of differentiation and almost operational matrices of integration. In Section 4 we discussed 

two kinds of problems for the cases Gu = u yy and Gu = u xy and the proposed method is used to approximate the singular 

partial integro-differential equation. In Sections 5 and 6 we derived the convergence analysis and error estimates for our 

proposed method. In Section 7 we demonstrate the accuracy of the proposed method by considering several test examples. 

Finally, some concluding remarks are given in Section 8 . 

2. Preliminaries: Used polynomials and function approximation 

2.1. Definition and properties of 2D shifted Legendre polynomials 

The 2 D shifted Legendre polynomials are defined on �(= [0 , 1] × [0 , 1]) as follows: 

ψ nm 

(x, y ) = L n (2 x − 1) L m 

(2 y − 1) , n, m = 0 , 1 , 2 , . . . , (2) 

where, L n ( x ) and L m 

( x ) are the well-known Legendre polynomials, respectively of order n and m , which are defined on the 

interval [ −1 , 1] and satisfy the following recursive formula 

L 0 (x ) = 1 , L 1 (x ) = x and L m +1 (x ) = 

2 m + 1 

m + 1 

xL m 

(x ) − m 

m + 1 

L m −1 (x ) , m = 1 , 2 , 3 , . . . 

and form a complete basis over the interval [ −1 , 1] . 2 D shifted Legendre polynomials are orthogonal with respect to weight 

function ω(x,y) such that 

∫ 1 

0 

∫ 1 

0 

ω(x, y ) ψ nm 

(x, y ) ψ i j (x, y ) d xd y = 

⎧ ⎨ 

⎩ 

1 

(2 n + 1)(2 m + 1) 
, for ı = n, J = m, 

0 , otherwise 

(3) 

Suppose X = L 2 (�) be the inner product space. Then the inner product in this space is defined by 

〈 f (x, y ) , g(x, t) 〉 = 

∫ 1 

0 

∫ 1 

0 

f (x, y ) g(x, y ) d xd y 

and the norm is as follows 

‖ f (x, y ) ‖ 2 = 〈 f (x, y ) , f (x, t) 〉 1 / 2 = 

(∫ x 

0 

∫ y 

0 

| f (x, y ) | 2 d xd y 

)1 / 2 

2.2. Function approximation 

Suppose that f ( x , y ) is an arbitrary function in L 2 ( �), then it can be approximated as 

f (x, y ) ≈
N ∑ 

n =0 

N ∑ 

m =0 

F nm 

ψ nm 

(x, y ) = F T �(x, y ) , (4) 

where, F and � are (N + 1) 2 × 1 vector given by 

F = [ F 00 , F 01 , . . . , F 0 N , F 10 , F 11 , . . . , 1 1 N , . . . , F N0 , . . . , F NN ] 
T , (5) 

�(x, y ) = [ ψ 00 (x, y ) , ψ 01 (x, y ) , . . . , ψ 0 N (x, y ) , ψ 10 (x, y ) , ψ 11 (x, y ) , . . . , ψ 1 N (x, y ) , . . . , ψ N0 (x, y ) , . . . , ψ NN (x, y )] T (6) 

and, ψ nm 

(x, y ) = ψ n (x ) ψ m 

(y ) 

Theorem. Let f N (x, y ) = F T 
N 
�(x, y ) be the 2 D shifted Legendre expansion of real sufficiently smooth function f ( x , y ) in �, where 

F N = [ f 00 , f 01 , . . . , f 0 N , f 10 , f 11 , . . . , f 1 N , . . . , f N0 , . . . , f NN ] 
T 

and , 

f nm 

= (2 n + 1)(2 m + 1) 

∫ 1 

0 

∫ 1 

0 

f (x, y ) ψ nm 

(x, y ) d xd y 

then there is a real number α such that 

‖ f (x, y ) − f N (x, y ) ‖ 2 ≤ α

(N + 1)!2 

2 N+1 

. 

Proof. See the reference [7] . �
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