# Diagonal update method for a quadratic matrix equation 

CrossMark

Young-Jin Kim*, Hyun-Min Kim<br>Department of Mathematics, Pusan National University, Busan, 609-735, Republic of Korea

## A R T I C L E I N F O

## MSC:

65H10

## Keywords:

Quadratic matrix equation
M-matrix
Fixed-point iteration
Bernoulli's method
Diagonal update method


#### Abstract

The quadratic matrix equation $A X^{2}+B X+C=0$ has been studied in many researches. The sufficient condition for the existence of the primary solution is already provided where the equation arose from an overdamped vibrating system with $M$-matrix coefficients. The Bernoulli's method can not be modified by relaxation in this equation. In this paper, we will introduce the diagonal update method and modify the Bernoulli's method.


© 2016 Elsevier Inc. All rights reserved.

## 1. Introduction

Quadratic matrix equations (QME) appear in many scientific areas. In this paper, we consider the following quadratic matrix equation

$$
\begin{equation*}
Q_{1}(X)=A X^{2}+B X+C=0 \tag{1.1}
\end{equation*}
$$

where
$A \in \mathbb{R}^{n \times n}$ is a diagonal matrix with positive diagonal elements,
$B \in \mathbb{R}^{n \times n}$ is a nonsingular $M$-matrix,
$C \in \mathbb{R}^{n \times n}$ is an $M$-matrix such that $B^{-1} C \geq 0$.
There are many methods for finding numerical solvent for various QME. Newton's method was employed by Davis [3]. The global convergence of Newton's method was improved by Higham and Kim [10]. He et al. suggested a cyclic reduction algorithm for solving a Quasi-Birth-Death problem [9]. A successive approximation method and a Newton's method for QME were constructed by Bai et al. [2]. They also proved the convergence of those methods. Bai and Gao suggest a modified Bernoulli's method for finding a minimal solvent [1]. In addition, there are many researches for other iterative methods and various solvents of QME [5,7,8,15].

The condition of coefficient matrices of the above QME is from Yu [16]. It is motivated by a quadratic eigenvalue problem arising from an overdamped vibrating system [12,13]. Yu [16] suggested the sufficient condition for the existence of the primary solvent by constructing fixed-point iterations. These iterations were produced by similar way in [4].

This equation can be easily modified as following $Q_{2}(X)=0$ by multiplying $A^{-1}$ [16],

$$
\begin{equation*}
Q_{2}(X)=X^{2}+B X+C=0 \tag{1.2}
\end{equation*}
$$

[^0]This equation also preserves the $M$-matrix structure of $Q_{1}(X)$. For the convenience, we will consider $Q_{2}(X)=0$ though $Q_{1}(X)$. We can construct the fixed-point iterative methods as follows:

$$
\left\{\begin{array}{l}
\text { Given } X_{0} \in \mathbb{R}^{n \times n}  \tag{1.3}\\
X_{k+1}=\mathcal{F}_{i}\left(X_{k}\right),
\end{array} \quad k=0,1,2, \ldots\right.
$$

where

$$
\begin{align*}
& \mathcal{F}_{1}(X)=-(B+X)^{-1} C  \tag{1.4}\\
& \mathcal{F}_{2}(X)=-B^{-1}\left(X^{2}+C\right) \tag{1.5}
\end{align*}
$$

Yu [16] also showed the monotone convergence of (1.4) and (1.5). We apply the relaxation skill to (1.4) and (1.5) to derive the following two functions for some $0 \leq a \leq 1$.

$$
\begin{align*}
& \mathcal{F}_{1}(X)=a X-(1-a)(B+X)^{-1} C  \tag{1.6}\\
& \mathcal{F}_{2}(X)=a X-(1-a) B^{-1}\left(X^{2}+C\right) \tag{1.7}
\end{align*}
$$

Example 1.1. In this example, we will compare the iteration numbers of relaxed functions $\mathcal{F}_{1}$ and $\mathcal{F}_{2}$. This example is wellknown example and let $n=30$.

$$
\begin{aligned}
& A=I, \quad B=\left[\begin{array}{cccccc}
20 & -10 & & & & \\
-10 & 30 & -10 & & & \\
& -10 & 30 & -10 & & \\
& & -10 & \ddots & \ddots & \\
& & & \ddots & 30 & -10 \\
& & & & -10 & 20
\end{array}\right] \text {, } \\
& C=\left[\begin{array}{rrrrrr}
15 & -5 & & & & \\
-5 & 15 & -5 & & & \\
& -5 & 15 & -5 & & \\
& & -5 & \ddots & \ddots & \\
& & & \ddots & 15 & -5 \\
& & & & -5 & 15
\end{array}\right] .
\end{aligned}
$$

We can easily verify that the relaxation skill cannot reduce iteration numbers of $\mathcal{F}_{1}$ and $\mathcal{F}_{2}$.
So we apply the diagonal update skill and suggest sufficient condition through relaxation skill.

$$
\begin{align*}
& \mathcal{F}_{1}(X)=-\left(B+X-\delta_{X} I\right)^{-1}\left(C+\delta_{X} X\right)  \tag{1.8}\\
& \mathcal{F}_{2}(X)=-\left(B-2 \delta_{X} I\right)^{-1}\left(X^{2}+2 \delta_{X} X+C\right) \tag{1.9}
\end{align*}
$$

where $\delta_{X}=\min \left\{1, \min \left\{\left|X_{i, i}\right|\right\}\right\}$.

## 2. Related definitions and lemmas

In this section, we introduce some well-known definitions [6,11,14] and lemmas. These definitions and lemmas are useful to understand $M$-matrix structure and the existence of primary solvent of QME (1.2) on the sufficient condition.
Definition 2.1. A matrix $A \in \mathbb{R}^{n \times n}$ is an $M$-matrix if $A=s I-B$ for some nonnegative $B$ and $s$ with $s \geq \rho(B)$ where $\rho$ is the spectral radius; it is a singular $M$-matrix if $s=\rho(B)$ and a nonsingular $M$-matrix if $s>\rho(B)$.

Lemma 2.2. For a $Z$-matrix $A$, the following are equivalent:
(1) A is a nonsingular M-matrix.
(2) $A^{-1}$ is nonnegative.
(3) Av>0 for some vector $v>0$.
(4) All eigenvalues of $A$ have positive real parts.

# https://daneshyari.com/en/article/6419806 

Download Persian Version:

## https://daneshyari.com/article/6419806

## Daneshyari.com


[^0]:    * Corresponding author. Tel.: +82 1051342806.

    E-mail addresses: kyj2806@hanmail.net, kyj2806@gmail.com (Y.-J. Kim), hyunmin@pusan.ac.kr (H.-M. Kim).

