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a b s t r a c t 

We construct and justify a high order method for the numerical solution of multi-point 

boundary value problems for linear multi-term fractional differential equations involving 

Caputo-type fractional derivatives. Using an integral equation reformulation of the bound- 

ary value problem we first regularize the solution by a suitable smoothing transforma- 

tion. After that we solve the transformed equation by a piecewise polynomial collocation 

method on a mildly graded or uniform grid. Optimal global convergence estimates are de- 

rived and a superconvergence result for a special choice of collocation parameters is es- 

tablished. To illustrate the reliability of the proposed method some numerical results are 

given. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Differential equations involving differential operators of fractional (non-integer) order have been proved to be a valuable 

tool in modeling many phenomena in the fields of physics, chemistry, engineering and others (see, for example, [1–3] ). 

Mathematical aspects of fractional differential equations and methods of their solution were discussed by many authors 

(see, for example, [4–6] and references cited therein). A lot publications are devoted to the numerical solution of fractional 

initial value problems (see, e.g., [7–13] ). In the last decade also boundary value problems for fractional differential equations 

have received an increasing attention. In particular, various existence and uniqueness results for fractional boundary value 

problems are obtained in [14–19] and the numerical solution of boundary value problems for fractional differential equations 

is considered in [20–30] . 

In the present paper we study the convergence behavior of a modified spline collocation method for the numerical 

solution of fractional boundary value problems of the form 

(D 

αp 
∗ y )(t) + 

p−1 ∑ 

i =0 

d i (t)(D 

αi ∗ y )(t) = f (t) , 0 ≤ t ≤ b, (1.1) 

n 0 ∑ 

j=0 

βi j0 y 
( j) (0) + 

l ∑ 

k =1 

n 1 ∑ 

j=0 

βi jk y 
( j) (b k ) = γi , i = 0 , . . . , n − 1 , n := � αp � , (1.2) 
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where βi j0 , βi jk , γi ∈ R := (−∞ , ∞ ) , � α� is the smallest integer greater or equal to α ∈ R , 

0 ≤ α0 < α1 < · · · < αp ≤ n , 0 < b 1 < · · · < b l ≤ b , 
p, l ∈ N := { 1 , 2 , . . . } , n 0 , n 1 ∈ N 0 := { 0 } ∪ N , n 0 < n, n 1 < n, 

(1.3) 

d i : [0 , b] → R (i = 0 , . . . , p − 1) and f : [0 , b] → R are some given continuous functions, and D 

αi ∗ y (i = 0 , . . . , p) are Caputo 

derivatives of an unknown function y . The Caputo fractional differential operator D 

α∗ of order α > 0 is defined by the formula 

(see, e.g, [4] ) 

(D 

α
∗ y )(t) = (D 

α(y − Q k −1 [ y ]))(t) , t > 0 , k := � α� , 
where 

Q k −1 [ y ](s ) = 

k −1 ∑ 

i =0 

y (i ) (0) 

i ! 
s i 

and D 

α is the Riemann–Liouville fractional differentiation operator of order α > 0 : 

(D 

αy )(t ) = 

d k 

dt k 
(J k −αy )(t) , t > 0 , k := � α� . 

Here J α , the Riemann–Liouville integral operator of order α > 0, is defined by the formula 

(J αy )(t) = 

1 

�(α) 

∫ t 

0 

(t − s ) α−1 y (s ) ds, t > 0 , (1.4) 

where � is the Euler gamma function. For α = 0 we set D 

0 = D 

0 ∗ = J 0 := I where I is the identity mapping. If α = k ∈ N then 

D 

k y = D 

k ∗y = y (k ) where y ( k ) is the usual k -th order derivative of y . 

It is well known (see, e.g., [31] ) that J α , α > 0, is linear, bounded and compact as an operator from L ∞ (0, b ) into C [0, b ]. 

Moreover (see, e.g., [5] ), we have for any y ∈ L ∞ (0, b ) that 

(J αy ) (k ) ∈ C[0 , b] , (J αy ) (k ) (0) = 0 , α > 0 , k = 0 , . . . , � α� − 1 , (1.5) 

J α J βy = J α+ βy, α > 0 , β > 0 , (1.6) 

D 

β J αy = D 

β
∗ J αy = J α−βy, 0 < β ≤ α. (1.7) 

As a rule, initial and boundary value problems for fractional differential equations are equivalent to certain weakly singu- 

lar integral equations of the second kind. More exactly, initial value problems correspond to Volterra type integral equations 

and boundary value problems to Fredholm type integral equations (see, e.g., [4,7,21] ). Therefore in general we cannot ex- 

pect that a solution of a fractional initial or boundary value problem is smooth on the closed interval of integration [0, b ] 

since the derivatives of solutions of weakly singular integral equations of the second kind are typically unbounded near the 

boundary of [0, b ]. Actually, the solutions of weakly singular Volterra equations are typically non-smooth at the initial point 

0 of the interval of integration [0, b ] whereas the solutions of weakly singular Fredholm equations are typically non-smooth 

at both endpoints of [0, b ] (see, e.g., [32,33] ). Due to the lack of smoothness of the exact solution, piecewise polynomial 

collocation methods based on uniform grids for solving such equations show slow convergence behavior [32] . In order to 

construct methods with higher convergence order it is necessary to take into account the possible singular behavior of the 

exact solution. 

From Theorem 2.1 below we see that the derivatives of the solution of Problem (1.1) and (1.2) and corresponding to this 

problem Fredholm integral equation are unbounded only near the left endpoint 0 of the interval of integration [0, b ]. There- 

fore we can apply for solving Problem (1.1) and (1.2) also some methods which are typical for solving Volterra equations. 

In particular, we can construct high order collocation methods by using polynomial splines and special graded grids where 

the grid points are more densely clustered near the singular point t = 0 of the exact solution y ( t ) of Problem (1.1) and (1.2) 

[27] . However, this approach has a disadvantage since the use of strongly non-uniform grids with special subintervals of 

very small length near the singular point of the exact solution may cause serious rounding error problems and because of 

loss of precision may lead to unstable behavior of numerical results. To diminish loss of precision we may resort colloca- 

tion on the uniform grid using non-polynomial basic functions which reflect the singular behavior of the exact solution. 

This approach has been applied for solving Volterra integral equations in [34–36] and for solving fractional differential and 

integro-differential equations in [37–39] . 

In the present paper we use an alternative approach for diminishing loss of precision. First we introduce an integral equa- 

tion reformulation of Problem (1.1) and (1.2) . Then we perform in the integral equation the smoothing change of variables 

t = b 1 −ρτρ (ρ ∈ [1 , ∞ )) so that the singularities of the (usual) derivatives of the exact solution will be milder or disappear. 

After that we solve the transformed integral equation by a piecewise polynomial collocation method on mildly graded or 

uniform grid. The final step of our method is based on a conversion of the obtained spline approximations into (typically 

non-polynomial) approximations for the solution of Problem (1.1) and (1.2) . Similar ideas for solving Volterra equations are 

used in [40–44] and for solving fractional differential and integro-differential equations in [45,46] . 
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