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Keyworc?s: ) The aim of this paper is to apply a computation method due to MaleSevi¢ and Makragi¢
Wilker inequality (Male3evic¢ and Makragic, 2016) for approximating some trigonometric functions. Inequal-

Trigonometric approximation ities of Wilker-Cusa—Huygens are discussed, but the method can be successfully applied

to a wide class of problems. In particular, we improve the estimates recently obtained by
Mortici (Mortici, 2014) and moreover we show that they hold true also on some extended
intervals.
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1. Introduction

Wilker [2] presented the inequality
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for x € (0, 7/2) and he asked for the largest constant ¢ > 0 in
. 2
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and x € (0, 7 /2). The Wilker inequality has attracted the interest of several authors in the recent past. In particular Sumner
et al. [3] proved the following double inequality
2
16 sinx tanx 8
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for x € (0, 7 /2). Mortici [1] has proved the following two statements:

Theorem 1.1. For every x € (0, 1) we have:

2
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2+ (E - a(x))x tanx < (x) +— < 2+ (E - b(x))x tanx, (1)
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where a(x) = ggsx°, b(X) = gg5X” — 1zp75X™.
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Theorem 1.2. For every x € (5 — % Z.) in the left-hand side and for every x e (5 — % Z) in the right-hand side the following
inequalities hold true:
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Theorems 1.1. and 1.2. describe a subtly analysis of Wilker inequality by Mortici. The method of proving the inequalites
in this paper was presented in [5] and it is based on the use of appropriate approximations of some mixed trigonometric
polynomials with finite Taylor series. This is a continuation of the method by Mortici presented in [4]. The method from [5]
was applied in [6-8] for related inequalities.

2. The main results

The authors of this paper provide an automatization for proving of mixed trigonometric inequalities, where the original
computation method was presented in MaleSevi¢ and Makragic [5]. Mortici [1] made a subtly analysis in the sense that he
looked for inequalities of higher precision. This paper shows that with minor modification of the functions a(x), b(x), c(x)
and d(x) from Mortici [1] is possible to get more precise inequalities which hold on the whole interval x ¢ (0, 7 /2).

The main purpose of our paper is to extend the intervals defined in theorems given by Mortici [4]. More precisely, we
extend the domains (0, 1) and (% — % %) from the previous theorems to (0, 5). We give the next two statements.

Theorem 2.1. For every x € (0, Z) the following inequalities hold true:

2
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2+ (E — a(x))x tanx < (x) + —~ = 2+ (E — bl(x)>x tanx,
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where a(x) = gzsX°, b (X) = ggsX* — =X with a = =

Theorem 2.2. For every x € (0, %) the following inequalities hold true:
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2+ (— +c(x)>x3 tanx < <x> + —~ < 2+ (— +d(x))x3 tanx,
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In [5] is considered a method for proving trigonometric inequalities for mixed trigonometric polynomials:

n
fOO =" aixPicost xsin' x > 0, (3)
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X € (87, 81), 6 < 0 < &1, where o; e R\ {0}, p;,q;,1; € Ng and n € N. One method for proving inequalities of type (3) is
based on transformation, using the sum of sine and cosine of multiple angles.

Let us mention some facts from [5]. Let ¢ : [a, b] — R be a function which is differentiable on [a, b] and indefinitely
differentiable on a right neighborhood of the point x = a. Denote by T,2"%(x) the Taylor polynomial of the function ¢(x)
at x = a of order m. Assume there is some 1 > 0 such that: T5%(x) > ¢(x). for every x € (a,a+n) c [a, b]; then define
T2%x%) =TS %x) and T2 (x) present an upper approximation of ¢(x) on (a.a+n) of a of order m. Analogously, if there
is some 7 > 0 such that: T)“(x) < ¢(x), x € (a,a+1n) c [a, b]; then let T%"(x) = T,"“(x) and T%"(x) present an under-
approximation of ¢(x) on (a,a+ n) of a of order m. Note that we can define upper and under approximations on the left
neighborhood of a point.

The following lemmas are proven in [5]:
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Lemma 2.3. (i) Let Ta(t) = >°_, Qi)

k € Ng. Then:
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, where n = 4k + 1,
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