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a b s t r a c t

In this work, we propose two methods based on the use of natural and quasi cubic spline

interpolations for approximating the solution of the second kind Fredholm integral equations.

Convergence analysis is established. Some numerical examples are given to show the validity

of the presented methods.
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1. Introduction

We are interested in the approximation of the solutions of the following Fredholm integral equations:

x(t) = f (t) +
∫ b

a

k(t, s)x(s)ds, t ∈ I = [a, b], (1.1)

where the functions f and k are sufficiently smooth. The existence and the uniqueness of the smooth solution are given by many

authors (see, for example, [14,15,20]).

The numerical solutions of Fredholm integral equations have been investigated by many authors (see, for example, [1,2,4,5,7–

10,16]). The monograph [4] presents a historical survey of many collocation methods for (1.1).

Allouch et al. [1,2] proposed a numerical method by approximating the kernel k by using spline quasi-interpolants. Atkinson

et al. [5] applied a continuous collocation method to approximate the solution of (1.1). Borzabadi and Fard [8] used a collocation

iterative method to find a numerical solution of nonlinear Fredholm integral equations.

The natural and the quasi cubic spline interpolation for approximating the solution of integral equations, ordinary differential

equations, partial differential equations have been proposed by many authors (see, for example, [6,11–13,19,21]).

This paper is concerned with the numerical solution of (1.1). We propose two main methods to find an approximate solution of

(1.1) in the space S2
3
(I,�n). More precisely, it is organized as follows. In Section 2, we describe the first collocation method which

is based on the use of natural cubic spline interpolation, and we show that it has an approximation order O(h4) on any compact

subinterval included in ]a, b[. In Section 3, we propose another method, based on cubic spline quasi-interpolation, which gives
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rise to two techniques for approximating the considered equation. We show that these both techniques have an approximation

order O(h4) on the whole interval [a, b]. In both cases, the approximation order four is reached under some conditions on the

kernel k. Section 4 is devoted to three numerical examples that illustrate the theoretical results. Finally, in Section 5, we give a

conclusion where we discuss a comparison between the two main methods.

2. Natural cubic spline approximation

Let �n = {ti = a + ih, i = 0, 1, . . . , n} be a uniform partition of the interval I, where the stepsize h = b−a
n , and let t−3 = t−2 =

t−1 = t0, tn+3 = tn+2 = tn+1 = tn. We denote by S2
3(I,�n) the space of C2 cubic splines with knot set �n and multiple set at the

endpoints. It has dimension n + 3 and the cubic B-splines {Bi, i = 0, 1, . . . , n + 2} with support [ti−3, ti+1] form a basis of this

space.

Let S ∈ S2
3(I,�n) be a cubic spline generated by boundary conditions (see [8]) interpolating the (n + 1) values xi = x(ti),

i = 0, . . . , n, i.e. S(ti) = xi, with natural boundary conditions S′′(a) = S′′(b) = 0. Then, the restrictions of S to the intervals σi =
[ti, ti+1], i = 0, . . . , n − 1, can be written in the form:

Si(t) = zi+1

6h
(t − ti)

3 + zi

6h
(ti+1 − t)

3 +
(

xi+1

h
− h

6
zi+1

)
(t − ti) +

(
xi

h
− h

6
zi

)
(ti+1 − t),

where zi = S′′(ti), i = 0, 1, . . . , n.

The values zi are determined as the solutions of the following linear system:

zi−1 + 4zi + zi+1 = 6

h2
(xi−1 − 2xi + xi+1), i = 1, . . . , n − 1,

with z0 = S′′(a) = zn = S′′(b) = 0.

In the matrix notation, the above system has the form:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . . . . . 0 0 0 0

1 4 1 0 . . . . . . 0 0 0 0

0 1 4 1 . . . . . . 0 0 0 0

...
...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

...

0 0 0 0 . . . . . . 1 4 1 0

0 0 0 0 . . . 0 . . . 1 4 1

0 0 0 0 . . . . . . 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z0

z1

z2

...

...
zn−2

zn−1

zn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 6

h2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

x0 − 2x1 + x2

x1 − 2x2 + x3

...

...

xn−3 − 2xn−2 + xn−1

xn−2 − 2xn−1 + xn

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.1)

It is well known, see [3], that for x, solution of the Eq. (1.1), smooth enough and for all t ∈ J = [c, d] ⊂ [a, b] we have ‖x − S‖∞,J =
O(h4). Hence, from (1.1), we obtain for all i = 0, . . . , n

xi = fi +
n−1∑
j=0

∫ t j+1

t j

k(ti, r)s j(r)dr + O(h4)

= fi +
n−1∑
j=0

z j+1

6h

∫ t j+1

t j

k(ti, r)(r − t j)
3dr︸ ︷︷ ︸

ai, j+1

+
n−1∑
j=0

z j

6h

∫ t j+1

t j

k(ti, r)(t j+1 − r)3dr︸ ︷︷ ︸
bi, j

+
n−1∑
j=0

(
x j+1

h
− h

6
z j+1

)∫ t j+1

t j

k(ti, r)(r − t j)dr︸ ︷︷ ︸
ci, j+1

+
n−1∑
j=0

(
x j

h
− h

6
z j

)∫ t j+1

t j

k(ti, r)(t j+1 − r)dr︸ ︷︷ ︸
di, j

+O(h4)

= fi + 1

6h

n∑
j=0

z jai, j + 1

6h

n∑
j=0

z jbi, j − h

6

n∑
j=0

z jci, j + 1

h

n∑
j=0

x jci, j + 1

h

n∑
j=0

x jdi, j − h

6

n∑
j=0

z jdi, j + O(h4), (2.2)

such that, ai,0 = bi,n = ci,0 = di,n = 0 for i = 0, . . . , n.

Now, we approximate xi by x̂i and zi by ẑi such that x̂i and ẑi , i = 0, . . . , n, satisfy the system (2.1) and for all i = 0, . . . , n, we

have

x̂i = fi + 1

6h

n∑
j=0

ẑ jai, j + 1

6h

n∑
j=0

ẑ jbi, j − h

6

n∑
j=0

ẑ jci, j + 1

h

n∑
j=0

x̂ jci, j + 1

h

n∑
j=0

x̂ jdi, j − h

6

n∑
j=0

ẑ jdi, j.
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