Asymptotical formulas for Gaussian and generalized hypergeometric functions

Miao-Kun Wang ${ }^{\text {a }}$, Yu-Ming Chu ${ }^{\text {a,*, }}$, Ying-Qing Song ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Huzhou University, Huzhou 313000, China
${ }^{\text {b }}$ School of Mathematics and Computation Sciences, Hunan City University, Yiyang 413000, China

A R TICLE INFO

MSC:

33C05
33A30

Keywords:

Gaussian hypergeometric function
Generalized hypergeometric function
Asymptotical formula
Monotonicity
Inequality

Abstract

In this paper, we present several generalizations and refinements for the asymptotic formulas of Gaussian and generalized hypergeometric functions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Gaussian hypergeometric function ${ }_{2} F_{1}$

For real numbers a, b, and c with $c \neq 0,-1,-2, \ldots$, the Gaussian hypergeometric function ${ }_{2} F_{1}$ is defined by

$$
{ }_{2} F_{1}(a, b ; c ; x)=F(a, b ; c ; x)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{x^{n}}{n!}
$$

for $|x|<1$, where the Pochhammer symbol

$$
(a)_{n}=a(a+1) \cdots(a+n-1)=\frac{\Gamma(a+n)}{\Gamma(a)}
$$

for $n=1,2, \ldots$, and $(a)_{0}=1$ for $a \neq 0, \Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t(\Re x>0)$ is the gamma function. It is well known that the Gaussian hypergeometric function has many important applications in geometric function theory, number theory and several other contexts, and a lot of special functions and elementary functions are the particular cases or limiting cases. Especially, in 1980s, de Branges used hypergeometric functions to prove the famous Bieberbach conjecture, which has given function theorists a renewed interest to study the role of Gaussian hypergeometric function. For the above, and more properties of $F(a, b ; c ; x)$, see [1,3,5-8,10,11,13,16,19,21,24,25].

[^0]The function $F(a, b ; c ; x)$ is said to be zero-balanced if $c=a+b$. In the zero-balanced case, there is a logarithmic singularity at $x=1$, and Gauss proved the asymptotic formula (see [14])

$$
\begin{equation*}
F(a, b ; a+b ; x) \sim-\frac{1}{B(a, b)} \log (1-x), \quad x \rightarrow 1 \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
B(z, w)=\frac{\Gamma(z) \Gamma(w)}{\Gamma(z+w)}, \quad \Re(z)>0, \quad \Re(w)>0 \tag{1.2}
\end{equation*}
$$

is the classical Beta function.
Ramanujan found a much sharper asymptotic formula (see [14])

$$
\begin{equation*}
B(a, b) F(a, b ; a+b ; x)+\log (1-x)=R(a, b)+O((1-x) \log (1-x)), \quad x \rightarrow 1 \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
R(a, b)=-\psi(a)-\psi(b)-2 \gamma \tag{1.4}
\end{equation*}
$$

$\psi(z)=\Gamma^{\prime}(z) / \Gamma(z), \mathfrak{R}(z)>0$ and γ is the Euler-Mascheroni constant.
In order to refine Gauss' asymptotic formula (1.1), Anderson et al. [4] considered the following Problem 1.1.
Problem 1.1. Is it true that the function

$$
x \rightarrow F(a, b ; a+b ; x)+\frac{1}{B(a, b)} \frac{1}{x} \log (1-x)
$$

is monotone on $(0,1)$ for suitable a and b ?
The above function was shown to be monotone for $a, b \in(0,1)$ or $(a, b) \in(1, \infty)$ in [2]. Indeed, they proved that
Theorem 1.1 ([[2], Theorem 1.4]). Let $a, b \in(0, \infty), B=B(a, b), R=R(a, b), x \in(0,1)$ and

$$
f(x)=\frac{x F(a, b ; a+b ; x)}{\log [1 /(1-x)]}
$$

Then the following statement are true:
(1) f is decreasing from $(0,1)$ onto $(1 / B, 1)$ if $a, b \in(0,1)$;
(2) f is increasing from $(0,1)$ onto $(1,1 / B)$ if $a, b \in(1, \infty)$;
(3) $f(x) \equiv 1$ for all $x \in(0,1)$ if $a=b=1$;
(4) The function $g(x)=B F(a, b ; a+b ; x)+(1 / x) \log (1-x)$ is increasing from $(0,1)$ onto $(B-1, R)$ if $a, b \in(0,1)$;
(5) The function $g(x)=B F(a, b ; a+b ; x)+(1 / x) \log (1-x)$ is decreasing from $(0,1)$ onto $(R, B-1)$ if $a, b \in(1, \infty)$.

Later, Qiu and Vuorinen [20] proved the following Theorems 1.2 and 1.3, where Theorem 1.2 extended the parts (4) and (5) in Theorem 1.1, while Theorem 1.3 is another refinement of Gauss' asymptotic formula (1.1).
Theorem 1.2 ([[20], Theorem 1.4]). Let $a, b \in(0, \infty), c=a+b, a_{1}^{*}=1-a b, a_{2}^{*}=2 a b-a-b, a_{3}^{*}=\left|a_{1}^{*}\right|+\left|a_{2}^{*}\right|, B=B(a, b), R=$ $R(a, b), x \in(0,1)$

$$
g(x)=B F(a, b ; c ; x)+\frac{1}{x} \log (1-x)
$$

Then we have
(1) $g(x) \equiv 0$ for all $x \in(0,1)$ if $a_{3}^{*}=0$;
(2) g is strictly increasing from $(0,1)$ onto $(B-1, R)$ if $a_{3}^{*} \neq 0$ and $a_{1}^{*} \geq \max \left\{0, a_{2}^{*}\right\}$;
(3) g is strictly decreasing from $(0,1)$ onto $(R, B-1)$ if $a_{3}^{*} \neq 0$ and $a_{1}^{*} \leq \min \left\{0, a_{2}^{*}\right\}$;
(4) In the other case not stated in parts (1)-(3), that is $a_{2}^{*}<a_{1}^{*}<0, g$ is not always monotone on (0,1).

Theorem 1.3 ([[20], Theorem 1.5]). Let $a, b \in(0, \infty), A_{1}^{*}=A_{1}^{*}(a, b)=a+b+a b-3, A_{2}^{*}=A_{2}^{*}(a, b)=a+b-3 a b+1, A^{*}=\left|A_{1}^{*}\right|+$ $\left|A_{2}^{*}\right|, B=B(a, b), R=R(a, b), r \in(0,1)$ and

$$
h(r)=\frac{B F(a, b ; a+b ; r)+\log (1-r)-R}{[(1-r) / r] \log [1 /(1-r)]} .
$$

Then we have
(1) $h(r) \equiv 1$ for all $r \in(0,1)$ if $A^{*}=0$;
(2) h is strictly decreasing from $(0,1)$ onto $(a b, B-R)$ if $A^{*} \neq 0$ and $A_{1}^{*} \leq \min \left\{0, A_{2}^{*}\right\}$. In particular, with this condition, for all $r \in(0,1)$,

$$
\begin{aligned}
a b \frac{1-r}{r} \log \left(\frac{1}{1-r}\right) & <B F(a, b ; a+b ; r)+\log (1-r)-R \\
& <(B-R) \frac{1-r}{r} \log \left(\frac{1}{1-r}\right)
\end{aligned}
$$

https://daneshyari.com/en/article/6419858

Download Persian Version:

https://daneshyari.com/article/6419858

Daneshyari.com

[^0]: * Corresponding author. Tel.: +86 572 2321510; fax: +86 5722321163.

 E-mail addresses: wmk000@126.com (M.-K. Wang), chuyuming@hutc.zj.cn, chuyuming2005@yahoo.com.cn (Y.-M. Chu), 1452225875@qq.com (Y.-Q. Song).

