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a b s t r a c t

In this work, the optimal control problems of the unsteady Navier–Stokes equations with vari-

ational multiscale stabilization (VMS) are considered. At first, the first order continuous op-

timality conditions are obtained. Since the adjoint equation of the Navier–Stokes problem is

a convection diffusion type system, then the same stabilization is applied to it. Semi discrete

a priori error estimates are obtained for the state, adjoint state and control variables. Crank–

Nicholson time discretization is used to get the fully discrete scheme. Numerical examples

verify the theoretical findings and show the efficiency of the stabilization for higher Reynolds

number.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Optimal control theory of viscous flows has several applications in engineering science. There have been an interest in control

problems of viscous problems in recent decades. Much of the work covers the existence and uniqueness results of the optimal

control problems. Various numerical methods have been devoted to the solutions of the optimal control problems. The numerical

methods are based on the computation of the derivatives of the function to be minimized. A gradient descent type method is

frequently used to solve the control problems numerically.

In this paper, the optimal control problem of the Navier–Stokes equations are studied. Here, the function based approach

optimize-then-discretize is used to get the optimality conditions. So that, the optimality system consists of the state and adjoint

equations as coupled by an algebraic equation. In [1,8,14,15,19,30,31,33,35], optimal control of Navier–Stokes equations were

studied. In literature, papers covering the optimal control of the Navier–Stokes equations are mostly related to the optimality

conditions and numerical methods. Especially, second order numerical methods, sequential quadratic programming and semi-

smooth Newton methods, have been analyzed. There are not much work focusing on the error analysis [14]. The originality of

this paper comes from the application of the variational multiscale methods and a priori error analysis.

The Navier–Stokes equations provide mathematical models to describe the behavior of fluid flows. Here, small viscosity ν is

considered. But, standard Galerkin finite element method fails to obtain the accurate solution due to the richness of flow scales.

So that, a numerical stabilization should be used. Most popular stabilization methods for flow problems are residual based

techniques as streamline upwind Galerkin (SUPG) and pressure stabilization methods, large eddy simulation (LES) methods and

variational multiscale methods (VMS). In some techniques, numerical viscosity is added on all scales and this gives rise to some
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problems due to the richness of flow scales. Classical LES techniques attempt to model only the character of large scales. Then,

various drawbacks like definition of appropriate boundary conditions for large scales and computations errors are encountered.

Among other stabilization mechanisms, VMS is easy to carry out the analysis and implement to algorithm. The finite element

method is chosen to solve this system in this study as a numerical method. In [25], the method used here was applied on a

Navier–Stokes system.

A comparison of various stabilization techniques applied on an Oseen problem was studied in [7]. A symmetric stabilization

technique, building the adjoint commute, and a quasi-optimal a priori estimate in the context of optimal control problems for

the Oseen system was covered in [6]. In [2], the effect of the Galerkin/least-squares (GLS) stabilization on the finite element

discretization of optimal control problems governed by the linear Oseen equations was studied. A convection-diffusion system

was given in [10] with analysis of some well-known stabilization techniques. In [27], a discontinuous Galerkin finite element

method (DG) with interior penalties for the optimal control problem of the convection-diffusion equation was studied and in

[20] an edge stabilized Galerkin finite element method for the same optimal control system was considered. Moreover, local

error estimates for SUPG solutions of advection-dominated elliptic linear-quadratic optimal control problems was studied in

[18]. Similarly, the local (DG) for optimal control problem governed by convection-diffusion equations was analyzed in [36]. In

[14], the authors considered the optimal control problem of Navier–Stokes equations without any stabilization. In [9], a subgrid-

scale stabilization scheme, similar to the idea used in this study was cast to an optimal control problem of an Oseen system and

error bounds were obtained.

In this study, a projection-based VMS approach [9,12,23] is applied to both the state equation of a time dependent optimal

control problem, Navier–Stokes, and its adjoint equation. In this technique, we add the global stabilization first and then subtract

its effect from the large scales which are defined through projections. Thus, stabilization acts only on the smallest resolved scales

for both state and adjoint equations [12].

The organization of the paper is as follows: Firstly, optimal control problem is defined and some notational notes and math-

ematical preliminaries are given. Then, the finite element discretization of the optimal control problem is considered with VMS.

A priori error analysis of the overall system is given next. Then, we conclude our study with numerical examples to verify the

effectiveness of the method.

2. Problem formulation

We define � be a bounded polygonal domain in R
2, and its Lipschitz boundary be � = ∂�. Let be Q = [0, T ] × �, where T >

0 . We consider the following optimal control problem of the unsteady Navier–Stokes equations:

min
(y,u)

J(y, u) = 1

2

∫
Q

((y(t, x) − yd(t, x))2 + α(u(t, x))2)dxdt (1)

subject to yt − ν�y + (y · ∇)y + ∇p = f + u in Q,

∇ · y = 0 in Q,

y = 0 on [0, T ] × �, (2)

y(0, x) = y0(x) in �,

where the state variable y : Q �→ R
2 is the fluid velocity, p : Q �→ R denotes the fluid pressure and u is the control variable. The

kinematic viscosity, which is the multiplicative reciprocal of the Reynolds number, is denoted by ν > 0. Here, α > 0 stands for

the regularization parameter, f(t, x) is a given function and yd is the desired state.

Norms and inner products for Sobolev and Lebesgue spaces are used as in [3]. Let us consider the following notations:

Lr(0, T ; X ) =
{

z : [0, T ] → X measurable:

∫ T

0

‖z(t)‖r
X dt < ∞

}

with the norm

‖z(t)‖Lr(0,T ;X ) =

⎧⎨
⎩

(∫ T

0 ‖z(t)‖r
X dt

)1/r
, if 1 ≤ t < ∞

ess sup
t∈(0,T )

‖z(t)‖X , if r = ∞.

The spatial parts of the velocity, pressure and control spaces are denoted by Y = H1
0
(�), M = L2

0
(�) and U = L2(�), respec-

tively. The dual space of Y = H1
0 (�), namely the space H−1(�) is equipped with the −1-norm

‖t‖−1 = sup
v∈Y

〈t, v〉
‖v‖1

. (3)

Here, 〈·, ·〉 denotes the duality pairing. For simplicity, we let ‖v‖2 and ‖v‖2
1

denote the norms ‖v‖2
L2(�)

= ∫
� v · v dx and

‖v‖2
H1(�)

= ∫
�(v · v + ∇v · ∇v) dx, respectively.

We shall give a summary of the mathematical theory for the unsteady Navier–Stokes equations:

yt − ν�y + (y · ∇)y + ∇p = f in Q,
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