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a b s t r a c t

Given points P1, P2, . . . , Pn in the plane, we are concerned with the problem of finding a fair

curve which interpolates the points. We assume that we have a method in hand, called a basic

curve method, for solving the geometric Hermite interpolation problem of fitting a regular

C∞ curve between two points with prescribed tangent directions at the endpoints. We also

assume that we have an energy functional which defines the energy of any basic curve. Using

this basic curve method repeatedly, we can then construct G1 curves which interpolate the

given points P1, P2, . . . , Pn. The tangent directions at the interpolation points are variable and

the idea is to choose them so that the energy of the resulting curve (i.e., the sum of the energies

of its pieces) is minimal. We give sufficient conditions on the basic curve method, the energy

functional, and the interpolation points for (a) existence, (b) G2 regularity, and (c) uniqueness

of minimal energy interpolating curves. We also identify a one-parameter family of basic curve

methods, based on parametric cubics, whose minimal energy interpolating curves are unique

and G2 under suitable conditions. One member of this family looks very promising and we

suggest its use in place of conventional C2 parametric cubic splines.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let P1, P2, . . . , Pn be a sequence of points in the complex plane C satisfying Pj �= Pj+1, and consider the problem of finding a

‘fair’ curve which passes sequentially (i.e., interpolates) the points. Whereas there do not exist interpolating curves with minimal

bending energy (see [3] and also [10]), except when the points lie sequentially along a line, it was shown recently [2] that

they do exist if one imposes the additional constraint that each piece of the interpolating curve be an s-curve (a curve which

turns monotonically at most 180° in one direction and then turns monotonically at most 180° in the opposite direction). Such

interpolating curves with minimal bending energy are called elastic splines. While work on [2] was in progress, the authors of

the present article took up the numerical challenge of computing elastic splines. As in [7], the problem was formulated as an

optimization problem where the interpolation points P1, P2, . . . , Pn are given but corresponding tangent directions d1, d2, . . . , dn

are variable. An important sub-problem, which was extensively addressed in [2], is that of finding an s-curve with minimal

bending energy which solves the first order geometric Hermite interpolation problem of constructing a curve which begins at

Pj with direction dj and ends at Pj+1 with direction d j+1. The s-curve condition places feasibility restrictions on the directions dj

and d j+1. In case Pj = 0 and Pj+1 lies on the positive real axis (which can be obtained by a translation and rotation) and writing

d j = eiα and d j+1 = eiβ , these feasibility restrictions reduce to the inequalities |α|, |β| < π and |α − β| ≤ π . The presence of these

coupled restrictions on the directions {dj} gives rise to a rather complicated feasible region in C
n and this in turn complicates
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Fig. 1. An elastic spline (a) before and (b) after the restriction |α|, |β| ≤ π /2.

Fig. 2. Basic curves in (a) canonical and (b) general position.

the optimization algorithm (see [9] for an alternative feasible region). After completing the numerics, it was observed that the

elastic splines were often fair, but could also be unsightly, particularly when the interpolation points force abrupt changes in

direction (see Fig. 1a). After much experimentation, we decided that the best way to eliminate the unsightly elastic splines is to

replace the s-curve feasibility inequalities |α|, |β| < π and |α − β| ≤ π with the simple restriction |α|, |β| ≤ π /2 (see Fig. 1b).

With these simple uncoupled restrictions on {dj}, the feasible region in C
n reduces to a Cartesian product and the optimization

algorithm simplifies to that of optimizing each direction individually while cycling through the points. In addition to eliminating

the unsightly elastic splines, the simplified restriction |α|, |β| ≤ π /2 also makes the theoretic study of elastic splines much

more tractable. Moreover, the basic theory can be developed in a general context where potentially any method for solving the

above-mentioned first order geometric Hermite interpolation problem can be used in place of that for elastic splines.

We now describe the basic setup. A unit tangent vector u = (P, d) is an ordered pair of complex numbers with |d| = 1

and can be visualized as a directed line segment with base-point P and direction d. A C∞ regular curve is a C∞ function f :

[a, b] → C whose first derivative f′ is non-vanishing. We say that f connects u1 = (P1, d1) to u2 = (P2, d2) if f (a) = P1, f ′(a) =
| f ′(a)|d1, f (b) = P2 and f ′(b) = | f ′(b)|d2. We use the term basic curve method to refer to a method for solving the first order

geometric Hermite interpolation problem mentioned above. Precisely, a basic curve method is a mapping (α, β , L) �→cL(α, β),

which is defined for angles α,β ∈ [−�,�] and lengths L > 0 (� ∈ (0, π ) is a given constant), whose image cL(α, β) is a C∞

regular curve which connects u = (0, eiα) to v = (L, eiβ ) (see Fig. 2a). Associated with the basic curve method is a functional

EL, whereby the ‘energy’ of the curve cL(α, β) equals EL(α, β). In practice, the energy of cL(α, β) is often its bending energy,

defined by 1
2

∫ b
a [κ(s)]2 ds

dt
dt with κ denoting signed curvature and s arclength, or an approximation of bending energy, such as

1
2

∫ b
a | f ′′(t)|2 dt, but there is no theoretical requirement that energy has a physical interpretation. It could just as well be the

cosmic energy of the curve. The basic curve method is extended to other pairs of unit tangent vectors by the use of translation

and rotation (see Fig. 2b). Specifically, let u1 = (P1, d1) and u2 = (P2, d2) be two unit tangent vectors with distinct base points,

and set α = arg
d1

P2−P1
, β = arg

d2
P2−P1

and L = |P2 − P1|. Here arg is defined, as usual, by arg reiθ = θ when r > 0 and θ ∈ (−π,π ].

If the angles α and β belong to [−�,�], then the basic curve connecting u1 to u2 is defined by c(u1, u2) := T◦cL(α, β), where the

transformation T (z) = a1z + a2 is determined by the requirements T (0) = P1 and T (L) = P2 (i.e., a1 = (P2 − P1)/L and a2 = P1).

The energy of c(u1, u2) is defined by Energy(c(u1, u2)) := EL(α, β). As a consequence of these definitions, the extended basic

curve method and its energy functional are invariant under translations and rotations.

Examples of basic curve methods pertaining to parametric cubics are given in [7,12]; we will have more to say about these

in Section 4. A basic curve method employing A-splines is given in [1], and we mention that second order basic curve methods

(where curvature data is also interpolated) can be found in [5,11] and the references therein.

With a basic curve method in hand, one can construct G1 curves which interpolate the points P1, P2, . . . , Pn (following [7]) by

assigning ‘feasible’ directions d1, d2, . . . , dn, and then use the resultant unit tangent vectors uj := (Pj, dj) to obtain an interpolating

curve c(u1, u2) � c(u2, u3) � · · · � c(un−1, un), called an admissible curve, whose energy is defined to be the sum of energies of

its constituent pieces. Here, the directions d1, d2, . . . , dn are deemed feasible if all of the basic curves c(u j, u j+1) are defined. The

goal is then to choose the feasible directions {dj} so that the energy of the corresponding admissible curve is minimized.

Our primary purpose is to prove sufficient conditions (and occasionally necessary conditions) for (a) existence, (b) G2 reg-

ularity, and (c) uniqueness of minimal energy admissible curves. These sufficient conditions depend on the constant �, which
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