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a b s t r a c t

This work proposes the use of a mesh-free technique, derived from the generalized Taylor

polynomials, for the analysis of axisymmetric plates and shells. The primary solution vari-

able(s) is/are assumed to take the form of a truncated Taylor series around a point c, and the

unknown coefficients of the expansion are determined using the governing differential equa-

tion(s) and boundary conditions. The method is free of shape-parameter calibration needed in

some other famous mesh-free techniques such as the RBF, and is quite easy to formulate and

program. Successful application of the method to several benchmark problems of axisymmet-

ric plate and shell structures proves its robustness. The results have been verified using the

existing rigorous analytical solutions that are in most cases not suited to practical engineering

calculations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Taylor series is widely used for representing functions satisfying certain conditions. Depending on the nature of the function,

the number of terms needed to achieve acceptable results varies. It has proved useful in several applications. Numerical solution

of differential equations by collocation using Taylor series to approximate the primary solution variable(s) is one of such. This

approach, also referred to as the Taylor collocation method (TCM), is purely meshless and unlike other famous meshless methods

such as the RBF [1–9], it doesn’t require the use of any calibration parameter that affects accuracy.

Some previous works conducted using the Taylor collocation technique include that of Sezer [10], where approximate solution

of the second-order linear differential equation with specified associated conditions is reported. Its application on generalized

Hermite, Laguerre, Legendre and Chebyshev equations proves successful. Collocation using the Taylor polynomials has proved

useful in solving integro-differential equations by several researchers. Karamete and Sezer [11] used it to transform linear integro-

differential equations to a system of linear algebraic equations in which the unknowns are the Taylor coefficients. The method is

appraised based on its performance on certain linear differential, integral, and integro-differential equations. Solution of general

high-order linear Fredholm–Volterra integro-differential equations have been reported in [12–16] using the Taylor collocation

method by transforming the integral equation to a matrix form via the collocation points. The analysis presented in [16] suggested

that the method has a very rapid convergence rate. A closely similar work has been reported in [17] for linear integro-fractional

differential equations of Volterra-type of order nα for 0 < α ≤ 1. Higher-order linear complex differential equations in the elliptic

domains have been solved by Sezer et al. [18], using a computer program written in Maple9, based on the Taylor collocation

method and its validity tested using some illustrative examples. Solution of high-order nonhomogeneous difference equations
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has been obtained by Gülsu et al. [19] and by Gökmen and Sezer [20]. The obtained solutions, in terms of Taylor polynomials

about any point, are for the equations having variable coefficients in both the aforementioned two references. Bagley–Torvik

equation is solved by Çenesiz et al. [21] using the Taylor collocation method and its numerous advantages over other numerical

methods for solving fractional differential equations have been highlighted. Solution, based on the same method, for high-order

linear pantograph equations with linear functional argument has been presented in [22]. The properties of the method have

been shown using illustrative examples consisting of initial conditions. Similar work is reported in [23] for pantograph functional

differential equations with proportional delays of the first and higher orders. Both the initial and boundary-value problems can

be conveniently handled by the method. Numerical solution of non-linear Schrodinger equation is obtained in [24] by using

Taylor polynomials and cubic B-spline basis collocation method for time discretization and spatial discretization, respectively.

The method was evaluated using some test problems. Dağ et al. [25] presented Taylor–Galerkin and Taylor collocation methods

for the numerical solutions of Burgers’ equation using B-splines. The Taylor series expansion is used in time discretization of

the equation. Accuracy of the methods was assessed based on L2 and L∞ error norms. Delay integro-differential equations have

been solved in [26,27] by collocation using Taylor polynomials and convergence of the method verified. Taştekin et al. [28] used

the collocation method based on Taylor polynomials to solve a class of the first order nonlinear differential equations with

mixed conditions. The high accuracy of the method, as well as its relative ease compared to some popular methods have been

demonstrated. Approximate solution of delayed Lotka–Volterra predator-prey model has been obtained in [29]. A system of

nonlinear equations involving the unknown Taylor coefficients is generated and solved.

Despite its appealing simplicity and remarkable accuracy, the collocation method in terms of Taylor polynomials has never,

to the knowledge of the author, been applied to solve problems involving plates and shells. Exact solutions of the system of

equations governing the behavior of this class of structural elements are, in most cases, rigorous and sometimes prohibitive

for practical design purposes. For that reason, the common practice is to adopt approximate analytical or numerical simulation

schemes in obtaining solutions. However, due to their limitations, the approximate analytical methods fail to perform in some

cases. Solutions based on numerical methods are, therefore, more reliable. Hence, this paper proposes the use of a mesh-free

technique, derived from the generalized Taylor polynomials, for the analysis of axisymmetric plates and shells. By satisfying

the governing equation(s) and boundary conditions at a number of distributed nodes within the domain and at the boundary,

respectively, we generate a matrix of the system of algebraic equations whose solution gives the values of unknown coefficients

of the expansion.

2. Formulation

A general mth-order linear differential equation with variable coefficients takes the form given in Eq. (1) subject to some

boundary conditions given by Eq. (2).

m∑
k=0

Pk(x)y(k)(x) = f (x), a ≤ x ≤ b (1)

m−1∑
j=0

(
αi jy

( j)(a) + βi jy
( j)(b)

)
= λi, i = 0, 1, . . . , m − 1 (2)

where Pk(x), k = 0, 1, . . . , m and f (x) are functions of the space variable x, and αi j, βi j and λi are appropriate constants.

Eq. (3) is a candidate solution which is assumed to take the form of a Taylor series expansion around c where, as a priori, the

function y is assumed to have nth derivative in the interval of expansion. The infinite series can be truncated at N terms that are

sufficient for convergence. This is written in Eq. (4).

y(x) =
∞∑

n=0

y(n)(c)

n!
(x − c)

n
, a ≤ x, c ≤ b, (3)

y(x) =
N∑

n=0

y(n)(c)

n!
(x − c)

n
, a ≤ x, c ≤ b, N ≥ m (4)

In order to find the unknown Taylor coefficients, a set of collocation points at some defined intervals within the problem

domain is used thus.

a = x0 < x1 < · · · xN−1 < xN = b

For a uniform interval, we have

xi = a + i
b − a

N
, i = 0, 1, 2, . . . , N (5)

Eq. (4) can be written in a matrix form thus

y(x) = XM0A (6)
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