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This paper investigates the L2–L∞ filtering problem for stochastic systems driven by Pois-

son processes and Wiener processes. Firstly, this paper presents an approach to transform

the expectation of stochastic integral with respect to Poisson process into the expectation

of Lebesgue integral by the martingale theory. Then, based on this, a filter is designed

to guarantee that the filtering error system is mean-square asymptotically stable and its

L2–L∞ performance satisfies a prescribed level. Finally, a simulation example is given to

illustrate the effectiveness of the proposed filtering scheme.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Since the state variables in control problems are not always available, state estimation is a very important problem.

Kalman filtering scheme is one of the most effective ways of dealing with the state estimation problems. However, one

drawback of Kalman filters is that the system model under consideration is required to be exactly known and the distur-

bances are restricted to be Gaussian noises with known statistics. When external noises are not precisely known, we can

resort to the technique of L2–L∞ filtering or H∞ filtering. The L2–L∞ performance was first discussed in [1]. The filtering

problem based on such a performance is usually called energy-to-peak filtering and the main objective is to minimize the

peak value of the estimation error for all possible bounded energy disturbances.

Stochastic phenomena are frequently encountered in many branches of science and engineering [2–9]. To model stochas-

tic phenomena, researchers have employed Wiener processes widely in the past years [10–14]. However, Wiener process

cannot describe jump stochastic phenomena effectively [15–17]. Nowadays, it has been recognized that Poisson process is a

natural model for jump stochastic phenomena [18,19] and stochastic systems driven by Poisson processes can be found in

many practical systems [18–23].

Considering that systems in the real world are often perturbed by continuous and jump stochastic phenomena simultane-

ously (e.g., multistage manufacturing system in [24]), researchers began to investigate stochastic systems driven by Poisson

processes and Wiener processes. For instance, the optimal control problem for such stochastic systems was studied in [25].

Kolmanovsky and Maizenberg [26] investigated the optimal containment control problem for the following stochastic system
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perturbed by Poisson process and Wiener process:

dx(t) = f (x(t))dt + g(x(t))dw(t) + h(x(t))dN (t), (1)

where w(t) is a Wiener process and N (t) is a Poisson process. However, according to [23] and [27], (1) should be improved

by

dx(t) = f (x(t))dt + g(x(t))dw(t) + h(x(t−))dN (t). (2)

If investigating control or filtering problems for the system (2), we should utilize the Itô formula, which includes the fol-

lowing term:∫ T

0
[V (t, x(t−) + h(x(t−))) − V (t, x(t−))]dN (t). (3)

(3) is a stochastic integral with respect to the semimartingale N (t) and V(t, x(t)) is a common Lyapunov function. It is very

difficult to handle the expectation of this term directly. Moreover, the integrand of this integral is a function of x(t−), which

will increase the difficulty. Due to this reason, there is still no paper to discuss the filtering problem for stochastic systems

driven by Poisson processes and Wiener processes. This motivates the present study.

In this paper, we are concerned with the L2–L∞ filtering problem for stochastic systems driven by Poisson processes

and Wiener processes. Firstly, by utilizing the martingale theory, this paper transforms the expectation of stochastic integral

with respect to Poisson process into the expectation of Lebesgue integral. Then, on the basis of this, we design a filter such

that the filtering error system is mean-square asymptotically stable and its L2–L∞ performance satisfies a prescribed level.

Finally, a simulation example is given to illustrate the effectiveness of the filtering scheme proposed in this paper.

Notation: In this paper, unless otherwise specified, we will employ the following notation. Let (�,F , {Ft}t≥0, P) be a

complete probability space with a natural filtration {Ft}t≥0 and E(·) be the expectation operator with respect to the prob-

ability measure. If A is a vector or matrix, its transpose is denoted by AT. If P is a square matrix, P > 0(P < 0) means that

is a symmetric positive (negative) definite matrix of appropriate dimensions while P ≥ 0(P ≤ 0) is a symmetric positive

(negative) semidefinite matrix. I stands for the identity matrix of appropriate dimensions. Let |·| denote the Euclidean norm

of a vector and its induced norm of a matrix. Unless explicitly specified, matrices are assumed to have real entries and

compatible dimensions. L2(�) denotes the space of all random variables X with E|X|2
< ∞, it is a Banach space with norm

‖X‖2 = (E|X|2)1/2. L2[0, ∞) is the space of square integrable functions over [0, ∞). The symbol ‘∗’ within a matrix repre-

sents the symmetric terms of the matrix, e.g.(X Y
∗ Z

) = ( X Y
Y T Z

). If a function is right continuous with left limits, this function is

called càdlàg function. If a function is left continuous with right limits, this function is called càglàd function. Moreover, a

stochastic process is said to be càdlàg if it almost surely has sample paths which are right continuous with left limits. A

stochastic process is said to be càglàd if it almost surely has sample paths which are left continuous with right limits.

2. Problem formulation and preliminaries

In this paper, we consider the following stochastic systems driven by Poisson processes and Wiener processes:

(�) : dx(t) = [Ax(t) + Bv(t)]dt + Cx(t)dw(t) + Dx(t−)dN (t), (4)

dy(t) = [Ex(t) + Fv(t)]dt, (5)

z(t) = Lx(t), (6)

x(0) = ξ , (7)

where x(t) ∈ Rn is the state vector; y(t) ∈ Rq is the measurement; v(t) ∈ Rp is the disturbance input which belongs to

L2[0, ∞); z(t) ∈ Rs is the signal to be estimated. A, B, C, D, E, F, L are known real constant matrices with appropriate

dimensions. (�,F , {Ft}t≥0, P) is a complete probability space with a natural filtration {Ft}t≥0. w(t) is a scalar standard

Wiener process and N (t) is a one-dimension Poisson process with parameter λ > 0. w(t) is independent of N (t).

Remark 1. As pointed out in [29, 30], stochastic differential equation (2) should be interpreted as meaning the correspond-

ing stochastic integral equation:

x(t) = x(0) +
∫ t

0

f (x(s))ds +
∫ t

0

g(x(s))dw(s) +
∫ t

0

h(x(s−))dN (s), (8)

where
∫ t

0 h(x(s−))dN (s) is the stochastic integral with respect to the semimartingale N (s), whose definition can be found

in [28,30].

For the system (�), we aim to design a filter of the following form:

(� f ) : dx̂(t) = A f x̂(t)dt + B f dy(t), (9)



Download English Version:

https://daneshyari.com/en/article/6419900

Download Persian Version:

https://daneshyari.com/article/6419900

Daneshyari.com

https://daneshyari.com/en/article/6419900
https://daneshyari.com/article/6419900
https://daneshyari.com

