FISEVIER

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

On the asymptotic expansions of the gamma function related to the Nemes, Gosper and Burnside formulas

Chao-Ping Chen

School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454000, Henan, China

ARTICLE INFO

MSC: 33B15

41A60 26D15

Inequality

Keywords:
Gamma function
Asymptotic expansion

ABSTRACT

In this paper, we present new asymptotic expansions of the gamma function related to the Nemes, Gosper and Burnside formulas.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Stirling's formula

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{a}\right)^n, \quad n \in \mathbb{N} := \{1, 2, \ldots\}$$
 (1.1)

has many applications in statistical physics, probability theory and number theory. Actually, it was first discovered in 1733 by the French mathematician Abraham de Moivre (1667–1754) in the form

$$n! \sim \text{constant} \cdot \sqrt{n} (n/e)^n$$

when he was studying the Gaussian distribution and the central limit theorem. Afterwards, the Scottish mathematician James Stirling (1692–1770) found the missing constant $\sqrt{2\pi}$ when he was trying to give the normal approximation of the binomial distribution.

Stirling's series for the gamma function is given (see [1, p. 257, Eq. (6.1.40)]) by

$$\Gamma(x+1) \sim \sqrt{2\pi x} \left(\frac{x}{e}\right)^x \exp\left(\sum_{m=1}^{\infty} \frac{B_{2m}}{2m(2m-1)x^{2m-1}}\right)$$
(1.2)

as $x \to \infty$, where B_n $(n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\})$ are the Bernoulli numbers defined by the following generating function:

$$\frac{z}{e^z - 1} = \sum_{n=0}^{\infty} B_n \, \frac{z^n}{n!}, \quad |z| < 2\pi \, .$$

The following asymptotic formula is due to Laplace

$$\Gamma(x+1) \sim \sqrt{2\pi x} \left(\frac{x}{e}\right)^x \left(1 + \frac{1}{12x} + \frac{1}{288x^2} - \frac{139}{51840x^3} - \frac{571}{2488320x^4} + \cdots\right)$$
 (1.3)

E-mail address: chenchaoping@sohu.com

as $x \to \infty$ (see [1, p. 257, Eq. (6.1.37)]). The expression (1.3) is sometimes incorrectly called Stirling's series (see [21, pp. 2–3]). Stirling's formula is in fact the first approximation to the asymptotic formula (1.3). Stirling's formula has attracted much interest of many mathematicians and has motivated a large number of research papers concerning various generalizations and improvements (see [2,4,5,7–11,15,17–20,24,26–36,39–51,54–62] and the references cited therein). See also an overview in [38].

Inspired by (1.1), Burnside [8] found a slightly more accurate approximation than Stirling's formula as follows:

$$n! \sim \sqrt{2\pi} \left(\frac{n+\frac{1}{2}}{e}\right)^{n+\frac{1}{2}}.\tag{1.4}$$

A much better approximation is the following the Gosper formula [24]:

$$n! \sim \sqrt{2\pi \left(n + \frac{1}{6}\right)} \left(\frac{n}{e}\right)^n.$$
 (1.5)

Ramanujan (see [63, p. 339] and [3, pp. 117–118]) presented the following approximation formula for the gamma function:

$$\Gamma(x+1) \sim \sqrt{\pi} \left(\frac{x}{e}\right)^x \left(8x^3 + 4x^2 + x + \frac{1}{30}\right)^{1/6}, \quad x \to \infty.$$
 (1.6)

The Ramanujan formula has been the subject of intense investigations and is reviewed in [6, p. 48, Question 754], and has motivated a large number of research papers (see, for example, [2,9,11,12,17,26–28,34,47,51–54,56]). Karatsuba [28, Eq. (5.5)] developed the approximation formula (1.6) to produce a complete asymptotic expansion:

$$\Gamma(x+1) \sim \sqrt{\pi} \left(\frac{x}{e}\right)^x \left(8x^3 + 4x^2 + x + \frac{1}{30} - \frac{11}{240x} + \frac{79}{3360x^2} + \frac{3539}{201600x^3} - \frac{9511}{403200x^4} - \frac{10051}{716800x^5} + \frac{233934691}{6386688000x^6} + \cdots\right)^{1/6}, \quad x \to \infty$$

$$(1.7)$$

 (x^{-6}) term corrected). Moreover, the author gave a formula for successively determining the coefficients.

Very recently, Chen [14] developed the approximation formula (1.6) to produce various complete asymptotic expansions. For example, Chen [14, Theorem 3] gave a pair of recursive relations for determining the constants λ_{ℓ} and μ_{ℓ} such that

$$\Gamma(x+1) \sim \sqrt{\pi} \left(\frac{x}{e}\right)^x \left(8x^3 + 4x^2 + x + \frac{1}{30} + \sum_{\ell=1}^{\infty} \frac{\lambda_{\ell}}{(x + \mu_{\ell})^{2\ell-1}}\right)^{1/6}, \quad x \to \infty.$$

Namely,

$$\Gamma(x+1) \sim \sqrt{\pi} \left(\frac{x}{e}\right)^{x} \left(8x^{3} + 4x^{2} + x + \frac{1}{30} - \frac{\frac{11}{240}}{x + \frac{79}{154}} + \frac{\frac{459733}{15523200}}{(x + \frac{71181889}{212396646})^{3}} - \frac{\frac{125134498502528329}{4061997157910630400}}{(x + \frac{597217044207994777948097107}{19933610835621779669968840050})^{5}} + \cdots \right)^{1/6}, \quad x \to \infty.$$

$$(1.8)$$

From a computational viewpoint, the formula (1.8) improves the Ramanujan-Karatsuba formula (1.7).

Nemes [62, Corollary 4.1] presented the following approximation formula for the gamma function:

$$\Gamma(x+1) \sim \sqrt{2\pi x} \left(\frac{x}{e}\right)^x \left(1 + \frac{1}{12x^2 - \frac{1}{10}}\right)^x, \quad x \to \infty.$$
 (1.9)

The formula (1.9) is stronger than the formula (1.6).

This paper is a continuation of our earlier work [14]. Here we present new asymptotic expansions of the gamma function related to the Nemes, Gosper and Burnside formulas.

2. Lemmas

The following lemmas are required in our present investigation.

Lemma 2.1 (see [16]). Let

$$A(x) \sim \sum_{n=1}^{\infty} a_n x^{-n}, \quad x \to \infty$$

be a given asymptotical expansion. Then the composition $\exp(A(x))$ has asymptotic expansion of the following form

$$\exp(A(x)) \sim \sum_{n=0}^{\infty} b_n x^{-n}, \quad x \to \infty, \tag{2.1}$$

Download English Version:

https://daneshyari.com/en/article/6419904

Download Persian Version:

https://daneshyari.com/article/6419904

Daneshyari.com