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a b s t r a c t

The classical way to tackle a nonlinear Fredholm integral equation of the second kind is to

adapt the discretization scheme from the linear case. The Iterated projection method is a pop-

ular method since it shows, in most cases, superconvergence and it is easy to implement. The

problem is that the accuracy of the approximation is limited by the mesh size discretization.

Better approximations can only be achieved for fine discretizations and the size of the linear

system to be solved then becomes very large: its dimension grows up with an order propor-

tional to the square of the mesh size. In order to overcome this difficulty, we propose a novel

approach to first linearize the nonlinear equation by a Newton-type method and only then

to apply the Iterated projection method to each of the linear equations issued from the New-

ton method. We prove that, for any value (large enough) of the discretization parameter, the

approximation tends to the exact solution when the number of Newton iterations tends to

infinity, so that we can attain any desired accuracy. Numerical experiments confirm this the-

oretical result.

© 2016 Published by Elsevier Inc.

1. Introduction

The general framework of this paper is the following. Let X be a complex Banach space and F : O ⊆ X → X a nonlinear Fréchet

differentiable operator defined on a nonempty open set O of X . The problem is set as

Find ϕ ∈ O : F (ϕ) = 0, (1)

where 0 is the null vector of X .

Our aim is to treat a special case of Eq. (1): a nonlinear Fredholm integral equation of the second kind:

Find ϕ ∈ O : ϕ − K(ϕ) = f, (2)

for a given function f ∈ X , where

K(x)(s) :=
∫ 1

0

κ(s, t, x(t)) dt, x ∈ O, s ∈ [0, 1],

and the kernel κ is a real-valued function of three variables :

(s, t, u) ∈ [0, 1]×[0, 1]×R �→ κ(s, t, u) ∈ R,

with enough regularity so that K is twice Fréchet-differentiable on O.
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Let T := K′ denotes the Fréchet derivative of K, i.e., for all x ∈ O,

T (x)h(s) =
∫ 1

0

∂κ

∂u
(s, t, x(t))h(t) dt, h ∈ X , s ∈ [0, 1]. (3)

In this context, the usual way to build a numerical approximation to the solution of (1) is to discretize it and obtain a nonlinear

system of equations in a finite dimensional space, then to apply the Newton method to the discrete nonlinear problem, and to

solve the corresponding finite dimensional linear problem at each iteration.

Concerning the integral equations of the form (2), there are mainly two types of discretizations : Nyström-type methods,

based on numerical quadrature formulae, and projection methods. The approximate solution ψn of a projection method is the

solution of the approximate equation:

find ψn ∈ O : ψn − Kn(ψn) = fn, (4)

where Kn is an approximation of the operator K depending on a projection operator πn onto a finite dimensional space Xn and

fn an approximation of f. For the simplest projection method, Galerkin, if πn is the orthogonal projection, and collocation, if πn

is an interpolatory projection, ψn ∈ Xn, Kn = πnKπn and fn = πn f . For the Kantorovich projection method ψn ∈ X , Kn = πnK

and fn = f . For the Iterated projection method ψn ∈ X , Kn = Kπn and fn = f . When K is a linear operator, the latter method is

also called Sloan method (see [13]). This method is particularly interesting because it is quite easy to implement and its order

of convergence can be higher than that of the Galerkin or the collocation methods (see [5,6,8]). General features about that

strategy– discretization then linearization – can be found in the survey [7] by Atkinson and Flores. That is the usual way to

treat (2).

The problem with this way of thinking is that the accuracy of the approximate solution is limited by n, the parameter of the

discretization which also decides the size of the linear system to be solved. Whatever the accuracy of the finite dimensional

Newton’s method can be, the discretization error remains.

Our gamble in the general framework is the following: if one linearizes the functional Eq. (2) first, via the Newton method,

one is led to a sequence of functional linear equations to be discretized in order to solve a finite-dimensional linear problem.

Can we attain any desired accuracy for a fixed discretization parameter n by applying more Newton iterations? For the Galerkin

or collocation method, it is equivalent to begin with linearization or discretization. But the bet is won when the discretization

process is the Nyström method or the Kantorovich projection method (see [10,11]). In both cases the approximation issued

from linearizing first (Strategy L) is shown to converge to the exact solution ϕ of (1) when the number of Newton iterations

tends to infinity, while, when we discretize first (Strategy D) by Nyström or Kantorovich projection methods, the Newton iterates

converge to the solution of the approximate equation. Notice that, in general, Strategy D is easier to implement and shows a faster

convergence. Roughly speaking, we have the choice of converging slowly to the exact solution with Strategy L or converging fast

but to a poor solution with Strategy D.

In papers [10,11], the framework is such that we have the norm convergence of the approximate operators Kn to K, and also

‖K′
n − K′‖ → 0. For the Iterated projection approximate operator Kn = Kπn, we have only collectively compact convergence of

the Fréchet derivative of Kn to the Fréchet derivative of K. Hence the situation is more difficult to handle.

The aim of this paper is to study the behavior of Strategy L, compared to the classical Strategy D when the discretization

process is the Iterated projection method.

In a general framework, Strategy L can be considered as the application of Newton’s method leading to a sequence (ϕ(k))k ≥ 0

defined by:

F ′(ϕ(k))(ϕ(k+1) − ϕ(k)) = −F (ϕ(k)), ϕ(0) ∈ O, (5)

where F′ denotes the Fréchet derivative of F. For convergence results on Newton and Newton-like methods, see the book of

Argyros [3] and the papers [1,4,9].

If F′(ϕ(k)) is invertible, Eq. (5) can be rewritten as

ϕ(k+1) = ϕ(k) − F ′(ϕ(k))−1F (ϕ(k)).

Then any discretization of this equation can be written as

ϕ(0)
n ∈ V ⊂ O, ϕ(k+1)

n = ϕ(k)
n − �n(ϕ

(k)
n )F (ϕ(k)

n ), (6)

where V is an open subset of O and �n : V ⊂ O → L(X ) is such that, in some discretized sense, for each x ∈ V, �n(x) is an ap-

proximation of F ′(x)−1, where L(X ) denotes the space of bounded linear operators from X into itself. Note that the discretization

process is described by the operator �n.

In Section 2, we provide conditions on the operator F and on the discretization process represented by �n that guarantee the

convergence of the sequence (ϕ(k)
n )k∈N of solutions of Eq. (6) to the exact solution ϕ of Eq. (1).

In Section 3, we use this result to suggest a new way of implementing the Iterated projection method to approximate the

solution for a nonlinear Fredholm equation of the second kind. We prove that the new Iterated projection discretization scheme

fulfills the conditions required to apply the general result of Section 2.

Section 4 is devoted to a numerical comparison between Strategy D and Strategy L. It confirms the theoretical analysis.
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