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a b s t r a c t

This paper investigates a new Hall-MHD system in R
3. Besides local well-posedness for strong

solutions and global existences for weak solutions, some blow-up criteria are established.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the following Hall-MHD system [1–4]:

div u = div b = 0, (1.1)

∂t u + u · ∇u + ∇
(
π + 1

2
|b|2

)
− �u = b · ∇b, (1.2)

∂t b −
(

δe

L0

)2

∂t�b + u · ∇b − b · ∇u − �b = δi

L0

1

ρ
rot (b × rot b) −

(
δe

L0

)2
1

ρ
rot ((u · ∇)rot b), (1.3)

(u, b)(·, 0) = (u0, b0)(·) in R
3. (1.4)

Here u is the fluid velocity field, π is the pressure and b is the magnetic field. L0 is the normalizing length limit, δe and δi denote

electron and ion inertia respectively, and ρ is the fluid density. For simplicity, we will take δe = δi = L0 = ρ = 1.

The applications of the Hall-MHD system cover a very wide range of physical objects, for example, magnetic reconnection in

space plasmas, star formation, neutron stars, and geo-dynamo.

When δe = 0, the system (1.1)–(1.3) reduces to the incompressible Hall-MHD equations, which has been received many stud-

ies [5–14]. The paper [5] gave a derivation of (1.1)–(1.3) from a two-fluid Euler–Maxwell system. Chae et al. [8] proved the local

existence of smooth solutions. Chae and Lee [6] and Fan and Ozawa [11] proved some regularity criteria. For the compressible

and density-dependent Hall-MHD, we refer to [15] and [16].
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When the last term in (1.3) is neglected, the system (1.1)–(1.3) reduced to the two-fluid MHD equation. Chen and Miao [17]

proved the local existence of strong solutions and some regularity criteria.

The aim of this paper is to investigate well-posedness and blow-up criteria for (1.1)–(1.4). First, we have the following local

well-posedness theorem for the strong solution.

Theorem 1.1. Let u0 ∈ Hs, b0 ∈ Hs+1 with s ≥ 3 and div u0 = div b0 = 0. Then there exist T > 0 and a unique strong solution (u, b) to

the problem (1.1)–(1.4) satisfying

u ∈ L∞(0, T ; Hs) ∩ L2(0, T ; Hs+1), b ∈ L∞(0, T ; Hs+1). (1.5)

Since the proof of Theorem 1.1 is very similar to that in [17], we omit the details here. At the same time, it is easy to establish

a global existence for weak solutions similarly to that for the standard MHD equations.

Theorem 1.2. Let u0 ∈ L2, b0 ∈ H1 and div u0 = div b0 = 0. Then the problem has a weak solution u, b satisfying energy inequality for

any T > 0.

Note that the last term in (1.3) can be rewritten as − ∑3
i=1 rot (∂i(uirot b)), but we omit the detailed proof here.

The following blow-up criteria are the main results and will be proved in Section 2.

Theorem 1.3. Let u0 ∈ Hs, b0 ∈ Hs+1 with s ≥ 3 and div u0 = div b0 = 0. Let (u, b) be the unique solution constructed in Theorem 1.1.

If one of the following two conditions

(i)

∫ T

0

(‖∇u(t)‖L∞ + ‖b(t)‖2
BMO)dt < ∞, (1.6)

(ii)

∫ T

0

(‖∇u(t)‖Ḃ0∞,∞
+ ‖∇b(t)‖Ḃ0∞,∞

)dt < ∞, (1.7)

holds for some 0 < T < ∞, then the solution (u, b) can be extended beyond T > 0.

Here Ḃ0∞,∞ denotes the homogeneous Besov space and BMO is the space of bounded mean oscillation.

Definition 1.1. (see [18]). Let {φ j} j∈Z be the Littlewood–Paley dyadic decomposition of unity that satisfies φ̂ ∈ C∞
0

(B2 \
B1/2), φ̂ j(ξ) = φ̂(2− jξ) and

∑
j∈Z φ̂ j(ξ) = 1 for any ξ 	= 0, where φ̂ is the Fourier transform of φ and Br is the ball with ra-

dius r centered at the origin. The homogeneous Besov space is defined as

Ḃs
p,q :=

{
f ∈ S ′/P : ‖ f‖Ḃs

p,q
< ∞

}
with the norm

‖ f‖Ḃs
p,q

:=

⎧⎨
⎩

(∑
j∈Z ‖2 js� j f‖q

Lp

) 1
q
, 1 ≤ q < ∞,

sup
j∈Z

‖2 js� j f‖Lp , q = ∞,

for all s ∈ R and 1 ≤ p ≤ ∞ and �jf := φj ∗ f, where S ′ is the space of tempered distributions and P is the space of polynomials.

We will also use the following logarithmic Sobolev inequalities [19,20]:

‖∇u‖L∞ ≤ C(1 + ‖∇u‖Ḃ0∞,∞
log (e + ‖u‖Hs)), (1.8)

‖b‖L∞ ≤ C(1 + ‖b‖BMO log
1/2 (e + ‖b‖H2)), (1.9)

with s > 5
2 .

2. Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. We only need to establish a priori estimates.

First, we can do the following energy estimates.

Testing (1.2) by u and using (1.1), we see that

1

2

d

dt

∫
|u|2dx +

∫
|∇u|2dx =

∫
(b · ∇)b · udx. (2.1)

Testing (1.3) by b and using (1.1), we infer that

1

2

d

dt

∫
(|b|2 + |∇b|2)dx +

∫
|∇b|2dx =

∫
(b · ∇)u · bdx. (2.2)
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