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1. Introduction

In this paper, we consider the following Hall-MHD system [1-4]:

divu =divb =0, (1.1)

atu+quu+V<rr+%|b|2>—Au:b-Vb, (12)
5\ 81 5.\ 1

ob—|-=2) Ab+u-Vb—b-Vu—Ab= - —rot(bxroth) — [ = | —rot((u-V)roth), (1.3)
Lo Lo p Ly) p

(1, b) (-, 0) = (ug, bo) () in R. (14)

Here u is the fluid velocity field, it is the pressure and b is the magnetic field. Ly is the normalizing length limit, . and §; denote
electron and ion inertia respectively, and p is the fluid density. For simplicity, we will take §, = §; = [g = p = 1.

The applications of the Hall-MHD system cover a very wide range of physical objects, for example, magnetic reconnection in
space plasmas, star formation, neutron stars, and geo-dynamo.

When &, = 0, the system (1.1)-(1.3) reduces to the incompressible Hall-MHD equations, which has been received many stud-
ies [5-14]. The paper [5] gave a derivation of (1.1)-(1.3) from a two-fluid Euler-Maxwell system. Chae et al. 8] proved the local
existence of smooth solutions. Chae and Lee [6] and Fan and Ozawa [11] proved some regularity criteria. For the compressible
and density-dependent Hall-MHD, we refer to [15] and [16].
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When the last term in (1.3) is neglected, the system (1.1)-(1.3) reduced to the two-fluid MHD equation. Chen and Miao [17]
proved the local existence of strong solutions and some regularity criteria.

The aim of this paper is to investigate well-posedness and blow-up criteria for (1.1)-(1.4). First, we have the following local
well-posedness theorem for the strong solution.

Theorem 1.1. Let ugy € H®, by € H*! with s > 3 and divugy = div by = 0. Then there exist T > 0 and a unique strong solution (u, b) to
the problem (1.1)-(1.4) satisfying

uel®0,T; H5) N1%(0, T; H¥*1), b e L>®(0, T; H*1). (1.5)

Since the proof of Theorem 1.1 is very similar to that in [17], we omit the details here. At the same time, it is easy to establish
a global existence for weak solutions similarly to that for the standard MHD equations.

Theorem 1.2. Let ug € L2, by € H' and divuy = div by = 0. Then the problem has a weak solution u, b satisfying energy inequality for
any T > 0.

Note that the last term in (1.3) can be rewritten as — Z,-L rot (0;(u;rot b)), but we omit the detailed proof here.
The following blow-up criteria are the main results and will be proved in Section 2.

Theorem 1.3. Let ug € H%, by € HSt! with s > 3 and div ug = div by = 0. Let (u, b) be the unique solution constructed in Theorem 1.1.
If one of the following two conditions

T
(i) /O (VU@ [~ + [BE) [Zyo)de < oo, (1.6)

T
(ii) /0 (IVu(©llzy _+ 1Vb(®) Iz )dt < oo, (1.7)
holds for some 0 < T < oo, then the solution (u, b) can be extended beyond T > 0.
Here B'gw denotes the homogeneous Besov space and BMO is the space of bounded mean oscillation.

Definition 1.1. (see [18]). Let {¢;};cz be the Littlewood-Paley dyadic decomposition of unity that satisfies é € CP(By \

Bi,2). (5]' &)= (Z)(Z*fé;-‘) and Y iy ¢A)j(“;‘) =1 for any & # 0, where @ is the Fourier transform of ¢ and B; is the ball with ra-
dius r centered at the origin. The homogeneous Besov space is defined as

B, o= {f es/P ISl < oo}
with the norm

. 1
(Xjez 1250 f111,)7. 1=q <o,

”f”BsM = slup ||2j$Ajf||LPv q = oo,
JeL

foralls e Rand 1 < p < oo and Af := ¢; = f, where S’ is the space of tempered distributions and P is the space of polynomials.

We will also use the following logarithmic Sobolev inequalities [19,20]:

IVullis < C(1+ | Vully log(e+ llullu)), (18)
[Ibll~ < C(1 + [|bllgmo log"* (e + [Ibll ), (19)
with s > %

2. Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. We only need to establish a priori estimates.
First, we can do the following energy estimates.
Testing (1.2) by u and using (1.1), we see that

%%/|u|2dx+/|Vu|2dx=/(b~V)b~udx. 1)
Testing (1.3) by b and using (1.1), we infer that
1d

2 2 2dy — . .
5&/(”" +|Vb| )dx+/|Vb| dx_/(b V)u - bdx. (2.2)
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