The generalized 3-connectivity of star graphs and bubble-sort graphs

Shasha Li ${ }^{\mathrm{a}}$, Jianhua $\mathrm{Tu}^{\mathrm{b}, *}$, Chenyan Yu^{a}
${ }^{\text {a }}$ Department of Fundamental Course, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
${ }^{\mathrm{b}}$ Department of Mathematics, Beijing University of Chemical Technology, Beijing 100029, China

A R T I CLE IN F O

MSC:
05C40
90C35

Keywords:

Generalized 3-connectivity
Internally disjoint trees
Cayley graphs
Star graphs
Bubble-sort graphs

Abstract

For $S \subseteq G$, let $\kappa(S)$ denote the maximum number r of edge-disjoint trees $T_{1}, T_{2}, \ldots, T_{r}$ in G such that $V\left(T_{i}\right) \cap V\left(T_{j}\right)=S$ for any $i, j \in\{1,2, \ldots, r\}$ and $i \neq j$. For every $2 \leq k \leq n$, the generalized k-connectivity of $G \kappa_{k}(G)$ is defined as the minimum $\kappa(S)$ over all k-subsets S of vertices, i.e., $\kappa_{k}(G)=\min \{\kappa(S) \mid S \subseteq V(G)$ and $|S|=k\}$. Clearly, $\kappa_{2}(G)$ corresponds to the traditional connectivity of G. The generalized k-connectivity can serve for measuring the capability of a network G to connect any k vertices in G. Cayley graphs have been used extensively to design interconnection networks. In this paper, we restrict our attention to two classes of Cayley graphs, the star graphs S_{n} and the bubble-sort graphs B_{n}, and investigate the generalized 3-connectivity of S_{n} and B_{n}. We show that $\kappa_{3}\left(S_{n}\right)=n-2$ and $\kappa_{3}\left(B_{n}\right)=n-2$.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The traditional connectivity $\kappa(G)$ of a graph G is defined as the minimum cardinality of a subset Q of vertices of G such that $G-Q$ is disconnected or trivial. A graph G is said to be k-connected if $\kappa(G) \geq k$. Two distinct paths are internally disjoint if they have no internal vertices in common. A well-known theorem of Whitney [20] provides an equivalent definition of connectivity. For each 2-subset $S=\{u, v\}$ of vertices of G, let $\kappa(S)$ denote the maximum number of internally disjoint (u, v)-paths in G. Then $\kappa(G)=\min \{\kappa(S) \mid S \subseteq V$ and $|S|=2\}$.

As a means of strengthening the connectivity, the generalized connectivity was introduced, among the same definition given by other authors, by Hager [3,4]. Let G be a nontrivial connected graph of order n. For $S \subseteq V(G), T_{1}$ and T_{2} are two internally disjoint trees connecting S if T_{1} and T_{2} are edge-disjoint and $V\left(T_{1}\right) \cap V\left(T_{2}\right)=S$ (note that the two trees are vertex-disjoint in $G-S$). Let $\kappa(S)$ denote the maximum number of internally disjoint trees connecting S in G. The generalizedk-connectivity of G, denoted by $\kappa_{k}(G)$, is then defined by $\kappa_{k}(G)=\min \{\kappa(S) \mid S \subseteq V(G)$ and $|S|=k\}$, where $2 \leq k \leq n$. Thus, when $k=2$, the generalized 2-connectivity $\kappa_{2}(G)$ of G is exactly the connectivity $\kappa(G)$, namely $\kappa_{2}(G)=\kappa(G)$. There have been many results on the generalized connectivity, see [8-14] and a survey [15]. The concept of generalized connectivity is related to another generalization of traditional connectivity, called rainbow connection number. Let G be a nontrivial connected graph on which an edge-coloring $c: E(G) \rightarrow\{1,2, \ldots, n\}$, is defined, where adjacent edges may be colored the same. A path is rainbow if no two edges of it are colored the same. An edgecoloring graph G is rainbow connected if any two vertices are connected by a rainbow path. We define the rainbow connection number of a connected graph G, denoted by $r c(G)$, as the smallest number of colors that are needed in order to make G rainbow connected. The rainbow connection number has been widely studied [6,16-18].

[^0]The underlying topology of a computer interconnection network can be modeled by a graph G, and the connectivity $\kappa(G)$ of G is an important measure for fault tolerance of the network. In general, the larger $\kappa(G)$ is, the more reliable the network is. However, if one wants to know how tough a network can be, for the connection of a set of vertices, then the generalized k-connectivity can serve for measuring the capability of a network G to connect any k vertices in G.

Since Cayley graphs have been used extensively to design interconnection networks, the study of the generalized k connectivity of Cayley graphs is very significative.

Let X be a group and S be a subset of X. The Cayley digraph $\operatorname{Cay}(X, S)$ is a digraph with vertex set X and arc set $\{(g, g s) \mid g \in X$, $s \in S\}$. Clearly, if $S=S^{-1}$, where $S^{-1}=\left\{s^{-1} \mid s \in S\right\}$, then $\operatorname{Cay}(X, S)$ can be made into an undirected graph. Cayley (di)graphs have a lot of properties which are desirable in an interconnection network [5,7]: vertex symmetry makes it possible to use the same routing protocols and communication schemes at all nodes; hierarchical structure facilitates recursive constructions; high fault tolerance implies robustness, among others.

Now, we consider Cayley graphs $\operatorname{Cay}(X, S)$ when the group X is a permutation group. Denote by $\operatorname{Sym}(n)$ the group of all permutations on $\{1, \ldots, n\}$. Let $\left(p_{1} p_{2} \ldots p_{n}\right)$ denote a permutation on $\{1, \ldots, n\}$ and ($i j$), which is called a transposition, denote the permutation that swaps the objects at positions i and j (not swapping element i and j), that is, $\left(p_{1} \ldots p_{i} \ldots p_{j} \ldots p_{n}\right)(i j)=$ $\left(p_{1} \ldots p_{j} \ldots p_{i} \ldots p_{n}\right)$. Let \mathcal{T} be a set of transpositions and $G(\mathcal{T})$ be the graph on n vertices $\{1,2, \ldots, n\}$ such that there is an edge $i j$ in $G(\mathcal{T})$ if and only if the transposition $(i j) \in \mathcal{T}$. The graph $G(\mathcal{T})$ is called the transposition generating graph of $\operatorname{Cay}(\operatorname{Sym}(n), \mathcal{T})$.

Moreover, if $G(\mathcal{T})$ is a tree, we call $G(\mathcal{T})$ a transposition tree and denote $\operatorname{Cay}(\operatorname{Sym}(n), \mathcal{T})$ by Γ_{n}. Specially, if $G(\mathcal{T}) \cong K_{1, n-1}$, then $\operatorname{Cay}(\operatorname{Sym}(n), \mathcal{T})$ is called a star graph S_{n}; and $\operatorname{Cay}(\operatorname{Sym}(n), \mathcal{T})$ is called a bubble-sort graph B_{n} if $G(\mathcal{T}) \cong P_{n}$.

In this paper, we study the generalized 3-connectivity of the star graph S_{n} and the bubble-sort graph B_{n}, and show that $\kappa_{3}\left(S_{n}\right)=n-2$ and $\kappa_{3}\left(B_{n}\right)=n-2$.

2. Preliminaries

We first introduce some notation and results that will be used throughout the paper.
We consider finite and simple graphs $G . V(G)$ and $E(G)$ denote its vertex set and its edge set respectively. For $v \in V(G)$, denote by $N_{G}(v)$ the set of neighbors of v in G. For a subset $U \subseteq V(G)$, let $N(U):=\left(\cup_{u \in U} N(u)\right) \backslash U$, and the subgraph induced by U is denoted by $G[U]$. Sometimes, we use a graph itself to represent its vertex set, for instance, $N\left(G_{1}\right)$ means $N\left(V\left(G_{1}\right)\right)$, where G_{1} is a subgraph of G.

Lemma 2.1 ([14]). Let G be a connected graph with minimum degree δ. Then $\kappa_{3}(G) \leq \delta$. In particular, if there are two adjacent vertices of degree δ, then $\kappa_{3}(G) \leq \delta-1$.

Lemma 2.2 ([14]). Let G be a connected graph with n vertices. For every two integers k and r with $k \geq 0$ and $r \in\{0,1,2,3\}$, if $\kappa(G)=4 k+r$, then $\kappa_{3}(G) \geq 3 k+\left\lceil\frac{r}{2}\right\rceil$. Moreover, the lower bound is sharp.

Lemma 2.3 (The Fan Lemma [1], p. 214). Let G be a k-connected graph, x a vertex of G, and let $Y \subseteq V-\{x\}$ be a set of at least k vertices of G. Then there exists a k-fan in G from x to Y, namely there exists a family of k internally disjoint (x, Y)-paths whose terminal vertices are distinct in Y.

Recall that $\Gamma_{n}=\operatorname{Cay}(\operatorname{Sym}(n), \mathcal{T})$ represents the Cayley graphs generated by transposition trees $G(\mathcal{T})$. The Cayley graphs Γ_{n} are ($n-1$)-regular bipartite graphs and have n ! vertices, see [7] for the details.

Without loss of generality, we assume that for the star graph S_{n}, the transposition generating graph is $G(\mathcal{T})=\{\{1, \ldots, n\},\{12,13, \ldots, 1 n\}\}$ and for the bubble-sort graph B_{n}, the transposition generating graph is $G(\mathcal{T})=$ $\{\{1, \ldots, n\},\{12,23, \ldots,(n-1) n\}\}$ throughout the paper.

Now we give some useful properties, which can be found in [2,19,21].
Lemma $2.4([2,21]) . \kappa\left(\Gamma_{n}\right)=n-1$.
Thus, $\kappa\left(S_{n}\right)=n-1$ and $\kappa\left(B_{n}\right)=n-1$.
Property 2.1. [19] For Γ_{n}, if n is a leaf of $G(\mathcal{T})$, then Γ_{n} can be decomposed into n disjoint copies of Γ_{n-1}, say $\Gamma_{n-1}^{1}, \Gamma_{n-1}^{2}, \ldots, \Gamma_{n-1}^{n}$, where Γ_{n-1}^{i} is an induced subgraph by vertex set $\left\{\left(p_{1} p_{2} \ldots p_{n-1} i\right) \mid\left(p_{1} \ldots p_{n-1}\right)\right.$ ranges over all permutations of $\{1, \ldots, n\} \backslash\{i\}\}$. We denote this decomposition by $\Gamma_{n}=\Gamma_{n-1}^{1} \oplus \Gamma_{n-1}^{2} \oplus \ldots \oplus \Gamma_{n-1}^{n}$.

Thus, by Property 2.1 $S_{n}=S_{n-1}^{1} \oplus S_{n-1}^{2} \oplus \cdots \oplus S_{n-1}^{n}$ and $B_{n}=B_{n-1}^{1} \oplus B_{n-1}^{2} \oplus \cdots \oplus B_{n-1}^{n}$
Property 2.2. [2] Consider the Gayley graphs Γ_{n}. Let $(t n) \in \mathcal{T}$ be a pendant edge of $G(\mathcal{T})$. For any vertex u of $\Gamma_{n-1}^{i}, u(t n)$ is the unique neighbor of u outside of Γ_{n-1}^{i}, is called the out-neighbor of u, written u^{\prime}. We call the neighbors of u in Γ_{n-1}^{i} the in-neighbors of u. Any two distinct vertices of Γ_{n-1}^{i} have different out-neighbors. Hence, there are exactly $(n-2)$! independent edges between Γ_{n-1}^{i} and Γ_{n-1}^{j} if $i \neq j$, that is, $\left|N\left(\Gamma_{n-1}^{i}\right) \cap V\left(\Gamma_{n-1}^{j}\right)\right|=(n-2)$! if $i \neq j$.

We give the following result.

https://daneshyari.com/en/article/6419920

Download Persian Version:
https://daneshyari.com/article/6419920

Daneshyari.com

[^0]: * Corresponding author. Tel.: +86 18500975081; fax: +86 01064430220.

 E-mail addresses: Iss@nit.zju.edu.cn (S. Li), tujh81@163.com (J. Tu), chenyan@hotmail.com (C. Yu).

