Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

The generalized 3-connectivity of star graphs and bubble-sort graphs

Shasha Li^a, Jianhua Tu^{b,*}, Chenyan Yu^a

^a Department of Fundamental Course, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China ^b Department of Mathematics, Beijing University of Chemical Technology, Beijing 100029, China

A R T I C L E I N F O

MSC: 05C40 90C35

Keywords: Generalized 3-connectivity Internally disjoint trees Cayley graphs Star graphs Bubble-sort graphs

ABSTRACT

For $S \subseteq G$, let $\kappa(S)$ denote the maximum number r of edge-disjoint trees T_1, T_2, \ldots, T_r in G such that $V(T_i) \cap V(T_j) = S$ for any $i, j \in \{1, 2, \ldots, r\}$ and $i \neq j$. For every $2 \leq k \leq n$, the generalized k-connectivity of $G \kappa_k(G)$ is defined as the minimum $\kappa(S)$ over all k-subsets S of vertices, i.e., $\kappa_k(G) = \min \{\kappa(S) | S \subseteq V(G) \text{ and } | S | = k\}$. Clearly, $\kappa_2(G)$ corresponds to the traditional connectivity of G. The generalized k-connectivity can serve for measuring the capability of a network G to connect any k vertices in G. Cayley graphs have been used extensively to design interconnection networks. In this paper, we restrict our attention to two classes of Cayley graphs, the star graphs S_n and the bubble-sort graphs B_n , and investigate the generalized 3-connectivity of S_n and B_n . We show that $\kappa_3(S_n) = n - 2$ and $\kappa_3(B_n) = n - 2$.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The traditional *connectivity* $\kappa(G)$ of a graph *G* is defined as the minimum cardinality of a subset *Q* of vertices of *G* such that G - Q is disconnected or trivial. A graph *G* is said to be *k*-connected if $\kappa(G) \ge k$. Two distinct paths are *internally disjoint* if they have no internal vertices in common. A well-known theorem of Whitney [20] provides an equivalent definition of connectivity. For each 2-subset $S = \{u, v\}$ of vertices of *G*, let $\kappa(S)$ denote the maximum number of internally disjoint (u, v)-paths in *G*. Then $\kappa(G) = \min \{\kappa(S) | S \subseteq V \text{ and } | S | = 2 \}$.

As a means of strengthening the connectivity, the generalized connectivity was introduced, among the same definition given by other authors, by Hager [3,4]. Let *G* be a nontrivial connected graph of order *n*. For $S \subseteq V(G)$, T_1 and T_2 are two *internally disjoint trees connecting S* if T_1 and T_2 are edge-disjoint and $V(T_1) \cap V(T_2) = S$ (note that the two trees are vertex-disjoint in G - S). Let $\kappa(S)$ denote the maximum number of internally disjoint trees connecting *S* in *G*. The *generalizedk-connectivity* of *G*, denoted by $\kappa_k(G)$, is then defined by $\kappa_k(G) = \min \{\kappa(S) | S \subseteq V(G) \text{ and } | S | = k\}$, where $2 \leq k \leq n$. Thus, when k = 2, the generalized 2-connectivity $\kappa_2(G)$ of *G* is exactly the connectivity $\kappa(G)$, namely $\kappa_2(G) = \kappa(G)$. There have been many results on the generalized connectivity, see [8–14] and a survey [15]. The concept of generalized connectivity is related to another generalization of traditional connectivity, called *rainbow connection number*. Let *G* be a nontrivial connected graph on which an edge-coloring $c : E(G) \rightarrow \{1, 2, ..., n\}$, is defined, where adjacent edges may be colored the same. A path is rainbow if no two edges of it are colored the same. An edgecoloring graph *G* is rainbow connected if any two vertices are connected by a rainbow path. We define the rainbow connection number of a connected graph *G*, denoted by rc(G), as the smallest number of colors that are needed in order to make *G* rainbow connected. The rainbow connection number has been widely studied [6,16–18].

* Corresponding author. Tel.: +86 18500975081; fax: +86 01064430220.

E-mail addresses: lss@nit.zju.edu.cn (S. Li), tujh81@163.com (J. Tu), chenyan@hotmail.com (C. Yu).

http://dx.doi.org/10.1016/j.amc.2015.11.016 0096-3003/© 2015 Elsevier Inc. All rights reserved.

The underlying topology of a computer interconnection network can be modeled by a graph *G*, and the connectivity $\kappa(G)$ of *G* is an important measure for fault tolerance of the network. In general, the larger $\kappa(G)$ is, the more reliable the network is. However, if one wants to know how tough a network can be, for the connection of a set of vertices, then the generalized *k*-connectivity can serve for measuring the capability of a network *G* to connect any *k* vertices in *G*.

Since Cayley graphs have been used extensively to design interconnection networks, the study of the generalized *k*-connectivity of Cayley graphs is very significative.

Let *X* be a group and *S* be a subset of *X*. The *Cayley digraph Cay*(*X*, *S*) is a digraph with vertex set *X* and arc set {(*g*, *gs*)|*g* \in *X*, *s* \in *S*}. Clearly, if *S* = *S*⁻¹, where *S*⁻¹ = {*s*⁻¹|*s* \in *S*}, then *Cay*(*X*, *S*) can be made into an undirected graph. Cayley (di)graphs have a lot of properties which are desirable in an interconnection network [5,7]: vertex symmetry makes it possible to use the same routing protocols and communication schemes at all nodes; hierarchical structure facilitates recursive constructions; high fault tolerance implies robustness, among others.

Now, we consider Cayley graphs Cay(X, S) when the group X is a permutation group. Denote by Sym(n) the group of all permutations on $\{1, ..., n\}$. Let $(p_1p_2...p_n)$ denote a permutation on $\{1, ..., n\}$ and (ij), which is called a *transposition*, denote the permutation that swaps the objects at positions i and j (not swapping element i and j), that is, $(p_1...p_i...p_j...p_n)(ij) = (p_1...p_j...p_n)$. Let \mathcal{T} be a set of transpositions and $G(\mathcal{T})$ be the graph on n vertices $\{1, 2, ..., n\}$ such that there is an edge ij in $G(\mathcal{T})$ if and only if the transposition $(ij) \in \mathcal{T}$. The graph $G(\mathcal{T})$ is called the *transposition generating graph* of $Cay(Sym(n), \mathcal{T})$.

Moreover, if $G(\mathcal{T})$ is a tree, we call $G(\mathcal{T})$ a *transposition tree* and denote $Cay(Sym(n), \mathcal{T})$ by Γ_n . Specially, if $G(\mathcal{T}) \cong K_{1,n-1}$, then $Cay(Sym(n), \mathcal{T})$ is called a *star graph* S_n ; and $Cay(Sym(n), \mathcal{T})$ is called a *bubble-sort graph* B_n if $G(\mathcal{T}) \cong P_n$.

In this paper, we study the generalized 3-connectivity of the star graph S_n and the bubble-sort graph B_n , and show that $\kappa_3(S_n) = n - 2$ and $\kappa_3(B_n) = n - 2$.

2. Preliminaries

We first introduce some notation and results that will be used throughout the paper.

We consider finite and simple graphs *G*. *V*(*G*) and *E*(*G*) denote its vertex set and its edge set respectively. For $v \in V(G)$, denote by $N_G(v)$ the set of neighbors of v in *G*. For a subset $U \subseteq V(G)$, let $N(U) := (\bigcup_{u \in U} N(u)) \setminus U$, and the subgraph induced by *U* is denoted by *G*[*U*]. Sometimes, we use a graph itself to represent its vertex set, for instance, $N(G_1)$ means $N(V(G_1))$, where G_1 is a subgraph of *G*.

Lemma 2.1 ([14]). Let *G* be a connected graph with minimum degree δ . Then $\kappa_3(G) \leq \delta$. In particular, if there are two adjacent vertices of degree δ , then $\kappa_3(G) \leq \delta - 1$.

Lemma 2.2 ([14]). Let *G* be a connected graph with *n* vertices. For every two integers *k* and *r* with $k \ge 0$ and $r \in \{0, 1, 2, 3\}$, if $\kappa(G) = 4k + r$, then $\kappa_3(G) \ge 3k + \lceil \frac{r}{2} \rceil$. Moreover, the lower bound is sharp.

Lemma 2.3 (The Fan Lemma [1], p. 214). Let *G* be a *k*-connected graph, *x* a vertex of *G*, and let $Y \subseteq V - \{x\}$ be a set of at least *k* vertices of *G*. Then there exists a *k*-fan in *G* from *x* to *Y*, namely there exists a family of *k* internally disjoint (*x*, *Y*)-paths whose terminal vertices are distinct in *Y*.

Recall that $\Gamma_n = Cay(Sym(n), \mathcal{T})$ represents the Cayley graphs generated by transposition trees $G(\mathcal{T})$. The Cayley graphs Γ_n are (n-1)-regular bipartite graphs and have n! vertices, see [7] for the details.

Without loss of generality, we assume that for the star graph S_n , the transposition generating graph is $G(\mathcal{T}) = \{\{1, ..., n\}, \{12, 13, ..., 1n\}\}$ and for the bubble-sort graph B_n , the transposition generating graph is $G(\mathcal{T}) = \{\{1, ..., n\}, \{12, 23, ..., (n-1)n\}\}$ throughout the paper.

Now we give some useful properties, which can be found in [2,19,21].

Lemma 2.4 ([2,21]). $\kappa(\Gamma_n) = n - 1$.

Thus, $\kappa(S_n) = n - 1$ and $\kappa(B_n) = n - 1$.

Property 2.1. [19] For Γ_n , if *n* is a leaf of $G(\mathcal{T})$, then Γ_n can be decomposed into *n* disjoint copies of Γ_{n-1} , say $\Gamma_{n-1}^1, \Gamma_{n-1}^2, \ldots, \Gamma_{n-1}^n$, where Γ_{n-1}^i is an induced subgraph by vertex set $\{(p_1p_2 \dots p_{n-1}i) | (p_1 \dots p_{n-1}) \text{ ranges over all permutations of } \{1, \dots, n\} \setminus \{i\}\}$. We denote this decomposition by $\Gamma_n = \Gamma_{n-1}^1 \oplus \Gamma_{n-1}^2 \oplus \ldots \oplus \Gamma_{n-1}^n$.

Thus, by Property 2.1 $S_n = S_{n-1}^1 \oplus S_{n-1}^2 \oplus \cdots \oplus S_{n-1}^n$ and $B_n = B_{n-1}^1 \oplus B_{n-1}^2 \oplus \cdots \oplus B_{n-1}^n$

Property 2.2. [2] Consider the Gayley graphs Γ_n . Let $(tn) \in \mathcal{T}$ be a pendant edge of $G(\mathcal{T})$. For any vertex u of Γ_{n-1}^i , u(tn) is the unique neighbor of u outside of Γ_{n-1}^i , is called the *out-neighbor* of u, written u'. We call the neighbors of u in Γ_{n-1}^i the *in-neighbors* of u. Any two distinct vertices of Γ_{n-1}^i have different out-neighbors. Hence, there are exactly (n-2)! independent edges between Γ_{n-1}^i and Γ_{n-1}^j if $i \neq j$, that is, $|N(\Gamma_{n-1}^i) \cap V(\Gamma_{n-1}^j)| = (n-2)!$ if $i \neq j$.

We give the following result.

Download English Version:

https://daneshyari.com/en/article/6419920

Download Persian Version:

https://daneshyari.com/article/6419920

Daneshyari.com