
Applied Mathematics and Computation 274 (2016) 41–46

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

The generalized 3-connectivity of star graphs and

bubble-sort graphs

Shasha Li a, Jianhua Tu b,∗, Chenyan Yu a

a Department of Fundamental Course, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
b Department of Mathematics, Beijing University of Chemical Technology, Beijing 100029, China

a r t i c l e i n f o

MSC:

05C40

90C35

Keywords:

Generalized 3-connectivity

Internally disjoint trees

Cayley graphs

Star graphs

Bubble-sort graphs

a b s t r a c t

For S ⊆ G, let κ(S) denote the maximum number r of edge-disjoint trees T1, T2, . . . , Tr in G such

that V(Ti) ∩ V(Tj) = S for any i, j ∈ {1, 2, . . . , r} and i �= j. For every 2 ≤ k ≤ n, the generalized

k-connectivity of G κk(G) is defined as the minimum κ(S) over all k-subsets S of vertices, i.e.,

κk(G) = min {κ(S)|S ⊆ V(G) and |S| = k}. Clearly, κ2(G) corresponds to the traditional connec-

tivity of G. The generalized k-connectivity can serve for measuring the capability of a network

G to connect any k vertices in G. Cayley graphs have been used extensively to design intercon-

nection networks. In this paper, we restrict our attention to two classes of Cayley graphs, the

star graphs Sn and the bubble-sort graphs Bn, and investigate the generalized 3-connectivity

of Sn and Bn. We show that κ3(Sn) = n − 2 and κ3(Bn) = n − 2.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The traditional connectivity κ(G) of a graph G is defined as the minimum cardinality of a subset Q of vertices of G such that

G − Q is disconnected or trivial. A graph G is said to be k-connected if κ(G) ≥ k. Two distinct paths are internally disjoint if they

have no internal vertices in common. A well-known theorem of Whitney [20] provides an equivalent definition of connectivity.

For each 2-subset S = {u, v} of vertices of G, let κ(S) denote the maximum number of internally disjoint (u, v)-paths in G. Then

κ(G) = min {κ(S)|S ⊆ V and |S| = 2}.

As a means of strengthening the connectivity, the generalized connectivity was introduced, among the same definition given

by other authors, by Hager [3,4]. Let G be a nontrivial connected graph of order n. For S ⊆ V(G), T1 and T2 are two internally disjoint

trees connecting S if T1 and T2 are edge-disjoint and V(T1) ∩ V(T2) = S (note that the two trees are vertex-disjoint in G − S). Let κ(S)

denote the maximum number of internally disjoint trees connecting S in G. The generalizedk-connectivity of G, denoted by κk(G),

is then defined by κk(G) = min {κ(S)|S ⊆ V(G) and |S| = k}, where 2 ≤ k ≤ n. Thus, when k = 2, the generalized 2-connectivity

κ2(G) of G is exactly the connectivity κ(G), namely κ2(G) = κ(G). There have been many results on the generalized connectivity,

see [8–14] and a survey [15]. The concept of generalized connectivity is related to another generalization of traditional connectiv-

ity, called rainbow connection number. Let G be a nontrivial connected graph on which an edge-coloring c : E(G) → {1, 2, . . . , n},
is defined, where adjacent edges may be colored the same. A path is rainbow if no two edges of it are colored the same. An edge-

coloring graph G is rainbow connected if any two vertices are connected by a rainbow path. We define the rainbow connection

number of a connected graph G, denoted by rc(G), as the smallest number of colors that are needed in order to make G rainbow

connected. The rainbow connection number has been widely studied [6,16–18].
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The underlying topology of a computer interconnection network can be modeled by a graph G, and the connectivity κ(G)

of G is an important measure for fault tolerance of the network. In general, the larger κ(G) is, the more reliable the network

is. However, if one wants to know how tough a network can be, for the connection of a set of vertices, then the generalized

k-connectivity can serve for measuring the capability of a network G to connect any k vertices in G.

Since Cayley graphs have been used extensively to design interconnection networks, the study of the generalized k-

connectivity of Cayley graphs is very significative.

Let X be a group and S be a subset of X. The Cayley digraph Cay(X, S) is a digraph with vertex set X and arc set {(g, gs)|g ∈ X,

s ∈ S}. Clearly, if S = S−1, where S−1 = {s−1|s ∈ S}, then Cay(X, S) can be made into an undirected graph. Cayley (di)graphs have

a lot of properties which are desirable in an interconnection network [5,7]: vertex symmetry makes it possible to use the same

routing protocols and communication schemes at all nodes; hierarchical structure facilitates recursive constructions; high fault

tolerance implies robustness, among others.

Now, we consider Cayley graphs Cay(X, S) when the group X is a permutation group. Denote by Sym(n) the group of all

permutations on {1, . . . , n}. Let (p1 p2 . . . pn) denote a permutation on {1, . . . , n} and (ij), which is called a transposition, denote

the permutation that swaps the objects at positions i and j (not swapping element i and j), that is, (p1 . . . pi . . . p j . . . pn)(i j) =
(p1 . . . p j . . . pi . . . pn). Let T be a set of transpositions and G(T ) be the graph on n vertices {1, 2, . . . , n} such that there is an edge

ij in G(T ) if and only if the transposition (i j) ∈ T . The graph G(T ) is called the transposition generating graph of Cay(Sym(n), T ).

Moreover, if G(T ) is a tree, we call G(T ) a transposition tree and denote Cay(Sym(n), T ) by �n. Specially, if G(T ) ∼= K1,n−1,

then Cay(Sym(n), T ) is called a star graph Sn; and Cay(Sym(n), T ) is called a bubble-sort graph Bn if G(T ) ∼= Pn.

In this paper, we study the generalized 3-connectivity of the star graph Sn and the bubble-sort graph Bn, and show that

κ3(Sn) = n − 2 and κ3(Bn) = n − 2.

2. Preliminaries

We first introduce some notation and results that will be used throughout the paper.

We consider finite and simple graphs G. V(G) and E(G) denote its vertex set and its edge set respectively. For v ∈ V(G), denote

by NG(v) the set of neighbors of v in G. For a subset U ⊆ V(G), let N(U) := ( ∪ u∈UN(u))�U, and the subgraph induced by U is denoted

by G[U]. Sometimes, we use a graph itself to represent its vertex set, for instance, N(G1) means N(V(G1)), where G1 is a subgraph

of G.

Lemma 2.1 ([14]). Let G be a connected graph with minimum degree δ. Then κ3(G) ≤ δ. In particular, if there are two adjacent vertices

of degree δ, then κ3(G) ≤ δ − 1.

Lemma 2.2 ([14]). Let G be a connected graph with n vertices. For every two integers k and r with k ≥ 0 and r ∈ {0, 1, 2, 3}, if

κ(G) = 4k + r, then κ3(G) ≥ 3k + � r
2 
. Moreover, the lower bound is sharp.

Lemma 2.3 (The Fan Lemma [1], p. 214). Let G be a k-connected graph, x a vertex of G, and let Y ⊆ V − {x} be a set of at least k

vertices of G. Then there exists a k-fan in G from x to Y, namely there exists a family of k internally disjoint (x, Y)-paths whose terminal

vertices are distinct in Y.

Recall that �n = Cay(Sym(n), T ) represents the Cayley graphs generated by transposition trees G(T ). The Cayley graphs �n

are (n − 1)-regular bipartite graphs and have n! vertices, see [7] for the details.

Without loss of generality, we assume that for the star graph Sn, the transposition generating graph is

G(T ) = {{1, . . . , n}, {12, 13, . . . , 1n}} and for the bubble-sort graph Bn, the transposition generating graph is G(T ) =
{{1, . . . , n}, {12, 23, . . . , (n − 1)n}} throughout the paper.

Now we give some useful properties, which can be found in [2,19,21].

Lemma 2.4 ([2,21]). κ(�n) = n − 1.

Thus, κ(Sn) = n − 1 and κ(Bn) = n − 1.

Property 2.1. [19] For �n, if n is a leaf of G(T ), then �n can be decomposed into n disjoint copies of �n−1, say

�1
n−1, �2

n−1, . . . , �n
n−1

, where �i
n−1

is an induced subgraph by vertex set {(p1 p2 . . . pn−1i)|(p1 . . . pn−1) ranges over all permu-

tations of {1, . . . , n}\{i}}. We denote this decomposition by �n = �1
n−1

⊕ �2
n−1

⊕ . . . ⊕ �n
n−1

.

Thus, by Property 2.1 Sn = S1
n−1

⊕ S2
n−1

⊕ · · · ⊕ Sn
n−1

and Bn = B1
n−1

⊕ B2
n−1

⊕ · · · ⊕ Bn
n−1

Property 2.2. [2] Consider the Gayley graphs �n. Let (tn) ∈ T be a pendant edge of G(T ). For any vertex u of �i
n−1

, u(tn) is the

unique neighbor of u outside of �i
n−1

, is called the out-neighbor of u, written u′. We call the neighbors of u in �i
n−1

the in-neighbors

of u. Any two distinct vertices of �i
n−1

have different out-neighbors. Hence, there are exactly (n − 2)! independent edges between

�i
n−1

and � j
n−1

if i �= j, that is, |N(�i
n−1

) ∩ V(� j
n−1

)| = (n − 2)! if i �= j.

We give the following result.
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