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a b s t r a c t

Kim et al. [9] studied some special polynomials and numbers which are closely related to

Changhee polynomials and numbers, and Park et al. (2014) [17] studied the twisted Changhee

polynomials and numbers.

In this paper we consider the twisted Changhee polynomials and numbers. From these poly-

nomials and numbers, we derive some identities. Furthermore, we investigate the higher-

order twisted Changhee polynomials and numbers and also discuss some computations of

zeros of the twisted Changhee polynomials.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

It is well-known that the Euler numbers defined by the generating function to be

2

et + 1
=

∞∑
k=0

Ek

tk

k!
, (see [2, 4, 5, 7, 12, 15]) (1)

When x = 0, En = En(0) are called Euler numbers. As is well-known, the Changhee polynomials are given by the generating

function to be

2

2 + t
(1 + t)x =

∞∑
k=0

Chn(x)
tn

n!
, (see [1, 3, 6, 8–10, 13, 14, 16]) (2)

In this paper we consider the twisted Changhee polynomials and numbers. From these polynomials and numbers, we derive

some identities. Furthermore, we investigate the higher-order twisted Changhee polynomials and numbers and also discuss

some computations of zeros of the twisted Changhee polynomials.
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2. The twisted Changhee polynomials and numbers

Let p be an odd prime number. We assume that Zp, Qp and Cp will denote the ring of p-adic integers, the field of p-adic

rational numbers and the completion of algebraic closure of Qp. The p-adic | · |p is normalized as |P|P = 1
P . The fermionic p-adic

integral on Zp is defined by Kim to be

I−1( f ) =
∫
Zp

f (x)dμ−1(x) = lim
N→∞

pN−1∑
x=0

f (x)( − 1)x, (see [1–16]) (3)

where f1(x) = f (x + 1).

Let Tp = ∪n≥1Cpn = limn→∞ Cpn = Cp∞ be the locally constant space, where Cpn = {ξ |ξ pn = 1} is the cyclic group of order pn.

For ξ ∈ Tp, we denote the locally constant function φξ by

φξ : Zp −→ Cp, x −→ ξ x (see [5, 16, 18]). (4)

If we take f (x) = φξ (x)etx, then we have∫
Zp

φξ (x)etxdμ−1(x) = 2

ξet + 1
, (5)

and if we take g(x) = φξ (x)(1 + t)x, then we have∫
Zp

φξ (x)(1 + t)xdμ−1(x) = 2

1 + ξ + ξ t
. (6)

From (5) and (6), we define the twisted Euler polynomials which are given by the generating function to be

2

ξet + 1
ext =

∞∑
n=0

En,ξ (x)
tn

n!
. (7)

When x = 0, En,ξ = En,ξ (0) are called the twisted Euler numbers and the twisted Changhee polynomials which are given by the

generating function to be

2

1 + ξ + ξ t
(1 + t)x =

∞∑
n=0

Chn,ξ (x)
tn

n!
. (8)

When x = 0, Chn,ξ = Chn,ξ (0) are called the twisted Changhee numbers (cf. [5,16]). Thus, by (5) and (7), we get

∞∑
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. (9)

From (9), we obtain the following theorem.

Theorem 2.1. Let m be a nonnegative integer, ξ ∈ Tp, and x ∈ Cp. Then we have

Em,ξ (x) =
m∑

n=0

(
m

n

)
En,ξ xn−m. (10)

From (6) and (8), we get
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