Some remarks on oscillation of second order neutral differential equations

Ravi P. Agarwal ${ }^{\text {a }}$, Chenghui Zhang ${ }^{\text {b }}$, Tongxing Li ${ }^{\text {b,c,d,* }}$
${ }^{\text {a }}$ Texas AEMM University-Kingsville, Department of Mathematics, 700 University Blvd., Kingsville, TX 78363-8202, USA
${ }^{\mathrm{b}}$ Shandong University, School of Control Science and Engineering, Jinan, Shandong 250061, PR China
${ }^{\text {c Linyi University, LinDa Institute of Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Linyi, Shandong 276005, }}$ PR China
${ }^{\mathrm{d}}$ Linyi University, School of Informatics, Linyi, Shandong 276005, PR China

A R T I C L E INFO

MSC:

34C10
34K11
Keywords:
Oscillation
Neutral differential equation
Second-order equation

Abstract

We study oscillatory behavior of a class of nonlinear second-order neutral differential equations. A new criterion is established that amends related results reported in the literature.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we are concerned with the oscillation of a second-order nonlinear neutral differential equation

$$
\begin{equation*}
\left(r(t)\left((x(t)+p(t) x(\tau(t)))^{\prime}\right)^{\alpha}\right)^{\prime}+q(t) x^{\alpha}(\sigma(t))=0 \tag{1.1}
\end{equation*}
$$

where $t \geq t_{0}>0, \alpha \geq 1$ is a quotient of odd positive integers, the functions r, p, q, τ, σ are such that $r, \sigma \in C^{1}\left(\left[t_{0}, \infty\right),(0, \infty)\right)$, $p, q, \tau \in \mathrm{C}\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$. We also suppose that, for all $t \geq t_{0}, \tau(t) \leq t, \sigma(t) \leq t, \sigma^{\prime}(t)>0, \lim _{t \rightarrow \infty} \tau(t)=\lim _{t \rightarrow \infty} \sigma(t)=\infty, 0 \leq p(t)$ $<1, q(t) \geq 0$, and q does not vanish eventually.

In the sequel, we denote $z(t):=x(t)+p(t) x(\tau(t))$ and assume that solutions x to Eq. (1.1) exist and can be continued indefinitely to the right. As usual, a solution of Eq. (1.1) is called oscillatory if it has arbitrarily large zeros; otherwise, it is termed nonoscillatory. Eq. (1.1) is said to be oscillatory if all its solutions oscillate.

The increasing interest in oscillatory behavior of solutions to second-order neutral differential equations is motivated by their applications in the natural sciences and engineering. We refer the reader to [1-8] and the references cited therein. Therein, Han et al. [2] and Ye and Xu [7] proved several oscillation results for (1.1), some of which we present below for the convenience of the reader. In what follows, we use the notation:

$$
\varepsilon:=(\alpha /(\alpha+1))^{\alpha+1}, Q(t):=q(t)(1-p(\sigma(t)))^{\alpha}, \pi(t):=\int_{t}^{\infty} r^{-1 / \alpha}(s) \mathrm{d} s
$$

Theorem 1.1 (See [7, Theorem 2.3]). Assume

$$
\begin{equation*}
\pi\left(t_{0}\right)<\infty \tag{1.2}
\end{equation*}
$$

[^0]and let
$$
\int^{\infty}\left[Q(t) \pi^{\alpha}(\sigma(t))-\frac{\varepsilon \sigma^{\prime}(t)}{\pi(\sigma(t)) r^{1 / \alpha}(\sigma(t))}\right] \mathrm{d} t=\infty
$$
and
$$
\int^{\infty}\left[Q(t) \pi^{\alpha}(t)-\frac{\varepsilon r(\sigma(t))}{\pi(t)\left(\sigma^{\prime}(t)\right)^{\alpha} r^{(\alpha+1) / \alpha}(t)}\right] \mathrm{d} t=\infty
$$

Then Eq. (1.1) is oscillatory.
Theorem 1.2 (See [2, Theorem 2.1]). Assume (1.2) and let

$$
\begin{equation*}
p^{\prime}(t) \geq 0 \quad \text { and } \quad \sigma(t) \leq \tau(t)=t-\tau_{0} \text { for } t \geq t_{0} \tag{1.3}
\end{equation*}
$$

If there exists a function $\rho \in \mathrm{C}^{1}\left(\left[t_{0}, \infty\right),(0, \infty)\right)$ such that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{t_{0}}^{t}\left[\rho(s) Q(s)-\frac{\left(\left(\rho^{\prime}(s)\right)_{+}\right)^{\alpha+1} r(\sigma(s))}{(\alpha+1)^{\alpha+1} \rho^{\alpha}(s)\left(\sigma^{\prime}(s)\right)^{\alpha}}\right] \mathrm{d} s=\infty \tag{1.4}
\end{equation*}
$$

and

$$
\limsup _{t \rightarrow \infty} \int_{t_{0}}^{t}\left[\frac{q(s) \pi^{\alpha}(s)}{(1+p(s))^{\alpha}}-\frac{\varepsilon}{\pi(s) r^{1 / \alpha}(s)}\right] \mathrm{d} s=\infty
$$

where $\left(\rho^{\prime}(t)\right)_{+}:=\max \left\{0, \rho^{\prime}(t)\right\}$, then Eq. (1.1) is oscillatory.
On the basis of assumption (1.3), the inaccuracies in Theorem 1.1 have been corrected by Theorem 1.2. In particular, Han et al. [2] pointed out that

$$
x(t) \geq(1-p(t)) z(t)
$$

does not hold eventually when assuming that x is a positive solution of (1.1) and condition (1.2) holds.
The objective of this paper is to improve recent oscillation results due to Han et al. [2] and Ye and Xu [7]. Using the generalized Riccati substitution, a new oscillation criterion for (1.1) is obtained that does not require assumption (1.3).

2. Oscillation results

All functional inequalities considered in this section are assumed to be satisfied for all t sufficiently large. The following auxiliary result collects two useful inequalities that can be found in Jiang and Li [4] and Zhang and Wang [8], respectively.

Lemma 2.1. Let $\alpha \geq 1$ be a ratio of two odd numbers. Then

$$
\begin{equation*}
A^{(\alpha+1) / \alpha}-(A-B)^{(\alpha+1) / \alpha} \leq \frac{B^{1 / \alpha}}{\alpha}[(1+\alpha) A-B], \quad A B \geq 0 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
-C v^{(\alpha+1) / \alpha}+D v \leq \frac{\alpha^{\alpha}}{(\alpha+1)^{\alpha+1}} \frac{D^{\alpha+1}}{C^{\alpha}}, \quad C>0 \tag{2.2}
\end{equation*}
$$

Theorem 2.2. Assume that (1.2) holds and there exists a function $\rho \in C^{1}\left(\left[t_{0}, \infty\right),(0, \infty)\right)$ such that (1.4) is satisfied. If there exists a function $\delta \in \mathrm{C}^{1}\left(\left[t_{0}, \infty\right),(0, \infty)\right)$ such that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{t_{0}}^{t}\left[\psi(s)-\frac{\delta(s) r(s)\left((\varphi(s))_{+}\right)^{\alpha+1}}{(\alpha+1)^{\alpha+1}}\right] \mathrm{d} s=\infty, \tag{2.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \psi(t):=\delta(t)\left[q(t)\left(1-p(\sigma(t)) \frac{\pi(\tau(\sigma(t)))}{\pi(\sigma(t))}\right)^{\alpha}+\frac{1-\alpha}{r^{1 / \alpha}(t) \pi^{\alpha+1}(t)}\right] \\
& p(t)<\pi(t) / \pi(\tau(t)), \quad \varphi(t):=\frac{\delta^{\prime}(t)}{\delta(t)}+\frac{1+\alpha}{r^{1 / \alpha}(t) \pi(t)},
\end{aligned}
$$

and $(\varphi(t))_{+}:=\max \{0, \varphi(t)\}$, then Eq. (1.1) is oscillatory.
Proof. Let x be a nonoscillatory solution of (1.1) on $\left[t_{0}, \infty\right)$. Without loss of generality, we may assume that there exists a $t_{1} \geq t_{0}$ such that $x(t)>0, x(\tau(t))>0$, and $x(\sigma(t))>0$ for all $t \geq t_{1}$. Then $z(t) \geq x(t)>0$, and by virtue of

$$
\begin{equation*}
\left(r(t)\left(z^{\prime}(t)\right)^{\alpha}\right)^{\prime}=-q(t) x^{\alpha}(\sigma(t)) \leq 0, \tag{2.4}
\end{equation*}
$$

https://daneshyari.com/en/article/6419944

Download Persian Version:

https://daneshyari.com/article/6419944

Daneshyari.com

[^0]: * Corresponding author at: Linyi University, LinDa Institute of Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Linyi, Shandong 276005, PR China. Tel.: +86 13869959692; fax: +86 5395797055.

 E-mail addresses: agarwal@tamuk.edu (R.P. Agarwal), zchui@sdu.edu.cn (C. Zhang), litongx2007@163.com (T. Li).

