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ARTICLE INFO ABSTRACT

MsC: In this paper, a new mixed finite element scheme is proposed for the nonlinear Sobolev equa-
65N15 tion by employing the finite element pair Q;;/Qo; x Q0. Based on the combination of inter-
65N30 polation and projection skill as well as the mean-value technique, the T-independent super-
Keywords: close results of the original variable u in H'-norm and the variable ¢ = —(a(u) Vu, + b(u) Vu)
Nonlinear Sobolev equation in L?-norm are deduced for the semi-discrete and linearized fully-discrete systems (t is the
Mixed finite element method temporal partition parameter). What's more, the new interpolated postprocessing operators
Semi-discrete and fully-discrete schemes are put forward and the corresponding global superconvergence results are obtained uncon-
t-independent superclose and ditionally, while previous literature always require certain time step conditions. Finally, some
superconvergence results numerical results are provided to confirm our theoretical analysis, and show the efficiency of

the method.
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1. Introduction

Let Q c R2 be a bounded convex polygonal domain with sufficiently smooth boundary 92 and 0 < T < oc. We develop and
analyze a new mixed finite element approximation to the following nonlinear Sobolev equation

u — V- (a(uw)Vue + b(w)Vu) = f(X,t), (X, t) e 2 x (0,T],
u=0, (X.t) e 32 x (0, T, (1.1)
u(X, O) = UO(X), X S Q,

where, X = (x,y), a(u), b(u) and f(X, t) are smooth functions. Assume that there exist constants u, M, B, such that 0 < u < a(u),
b(u) <M, |a’(u) + b’ (u)| <B.

Sobolev equation arises in the flow of fluids through fissured rock [1], thermodynamics shear in second order fluids, consoli-
dation of clay, and other applications [2]. A lot of simulation methods have been put forward for Sobolev equation. For example,
for linear case, Gao and Rui [3] formulated two spliting least-squares mixed finite element procedures, which yielded optimal
order error estimates. The expanded mixed finite element methods(FEMs) were elaborated in [4,5], and optimal order error es-
timates for both the scalar and two vector functions are obtained. As to the nonlinear case, Ewing [6] studied the Galerkin FEM.
[7] investigated semi-discrete and fully-discrete schemes and derived an optimal order error estimation of EQ{** nonconforming
finite element [8,9]. Sun and Yang [10] considered a penalty discontinuous Galerkin conforming FEM.

Furthermore, for many other nonlinear physical systems, the time-dependent optimal error estimates with the linearized
Galerkin FEM have been extensively researched, such as nonlinear parabolic problems [11,12], heat and moisture transport system
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in textile materials [ 13,14], nonlinear Schrédinger equations [15,16], and Navier-Stokes equations [ 17-19]. Since the boundedness
of the numerical solution in L* norm is a key issue in the error analysis, we may use mathematical induction with an inverse
inequality to bound the numerical solution

UF — Ryu"[l1~ < Ch™# U} — Ryu"[[o < Ch=% (A1 4 ™), (12)

where U and u" are the finite element solution and the exact solution, respectively, Ry is a certain projection operator. Ob-
viously, the time-step restriction arises from (1.2) immediately, which may result in extremely time-consuming in practical
computations. To avoid this difficulty, Li and Sun [20] proposed a linearized backward Euler-Galerkin FEM for a class of nonlin-
ear parabolic PDEs and obtained the unconditional error estimates. The main idea in [20] is the error splitting technique, which
splitted the numerical error into two parts, the spatial error and the temporal error. Thus, the estimate of (1.2) will be replaced
by

U — RaU™ |~ < Ch™2|U] — RyU™lo < Ch=2h™1, (13)

without any time-restrictions, where U" is the time-discrete solution. Motivated by this idea, in [21-23], authors investigated the
incompressible miscible flow in porous media, the nonlinear Schrédinger equation and miscible displacement in porous media
and deduced the unconditional error estimates, respectively.

As we know, for the usual mixed FEM, the two approximating spaces must be chosen carefully so that they can satisfy the
so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. In order to make this condition to be satisfied easier, Chen and Chen
[24] established a mixed variational form for second elliptic problems in which the two approximating spaces only need to
fulfill a very simple inclusion relationship. Consequently, based on the nonconforming finite element pair EQ[*/Qyo x Qo1. Shi
and Zhang [25] applied the method to a linear Sobolev equation under the semi-discrete and Euler fully-discrete schemes, and
obtained the corresponding optimal error estimates and superclose results. Shi and Zhang [26], [27] studied the linear parabolic
equation, [26] showed optimal error results of order O(h) by employing the nonconforming finite element pair P; /Py, and [27]
deduced the superclose results of order O(h2) as well as the extrapolations of order O(h3) with the pair EQ[™/Q0 x Qo1-

As a first attempt, in the present work, under weaker hyphethesis of u; € L2(0, T; H2(S2)) instead of u; € L(0, T; H3(2)) required
in [30], we study a new mixed finite element scheme for the nonlinear Sobolev Eq. (1.1), and obtain the unconditional superclose
and superconvergent results by avoiding the estimate of the numerical solution in L>-norm. It is worthy to be emphasized that,
since our fully-discrete analysis is defined by an average of those at two consecutive time levels, the linearized system is much
more technically complicated than that for the linearized backward Euler scheme in [20,21].

The rest of the paper is organized as follows. In Section 2, we introduce some notations and the mixed finite element
scheme. In Section 3, the superclose results of order O(h?) for the original variable u in H'-norm and the auxiliary variable
q = —(a(u)Vue + b(u)Vu) in L2-norm are deduced for the semi-discrete system. In Section 4, we give the linearized FEM for
the fully-discrete system and derive the corresponding superclose estimates of order O(h? + t2), which are time-independent
by estimating §" =t Y, w + &1 in a technical way. In Section 5, the new interpolated postprocessing operators are
constructed which have smaller degrees of freedom than that of [28], and the corresponding global superconvergence results
of order O(h%) and O(h? + 2) are deduced for semi-discrete and fully-discrete systems, respectively. In Section 6, some numeri-
cal results are provided to verify the theoretical analysis, and show the efficiency of the method.

2. Construction of mixed finite elements and preliminaries

Let Ty, be a regular rectangular subdivision of 2. K € Ty, is an element with four vertices a; and with four edges I; = a;a; 7. i =
1,2, 3,4 (mod 4) parallel to x-axis and y-axis, h = ml?x diam(K). The finite element spaces V), and W, are defined by

Vi = {1 vlk € Qu(K), VK € Ty} V! = {v:v € Vi vy = 0},
Wy, = (W = (W, w?) e (12(2))% Wk € Qo1 (K)x € Quo(K)., VK € T},

where Q;; =span{x'y*,0 <1 <i,0 <s < j}.
For v e H2(Q), Wy, = (w1, w;) € (H'(R))2, we define the associated interpolation operators I, and ITj, as

Iy :ve HA(Q) — Lw e Vi, Ik = Ik, Ikv(a) = v(a;),i=1,2,3,4,
and

Iy : G e (H(R)? — Myq € Wy, Myl = HK,/I((T— Ikq) - Tids = 0,

respectively, where 7; is the unit tangent vector of I;.
Foru € H3(RQ), § € (H2(R2))?, there hold [28]

(V(u—Iu), Vv) < CR?|lulls|lvlli, Vv, € Vi, (21)

(G — TG W) < CR?(|qll2[1Wnllo. YWy € W (22)
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