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a b s t r a c t

In this paper, a new mixed finite element scheme is proposed for the nonlinear Sobolev equa-

tion by employing the finite element pair Q11/Q01 × Q10. Based on the combination of inter-

polation and projection skill as well as the mean-value technique, the τ -independent super-

close results of the original variable u in H1-norm and the variable �q = −(a(u)∇ut + b(u)∇u)
in L2-norm are deduced for the semi-discrete and linearized fully-discrete systems (τ is the

temporal partition parameter). What’s more, the new interpolated postprocessing operators

are put forward and the corresponding global superconvergence results are obtained uncon-

ditionally, while previous literature always require certain time step conditions. Finally, some

numerical results are provided to confirm our theoretical analysis, and show the efficiency of

the method.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let � ⊂ R
2 be a bounded convex polygonal domain with sufficiently smooth boundary ∂� and 0 < T < ∞. We develop and

analyze a new mixed finite element approximation to the following nonlinear Sobolev equation⎧⎨⎩
ut − ∇ · (a(u)∇ut + b(u)∇u) = f (X, t), (X, t) ∈ � × (0, T ],

u = 0, (X, t) ∈ ∂� × (0, T ],

u(X, 0) = u0(X), X ∈ �,

(1.1)

where, X = (x, y), a(u), b(u) and f(X, t) are smooth functions. Assume that there exist constants μ, M, B, such that 0 < μ ≤ a(u),

b(u) ≤ M, |a′(u) + b′(u)| ≤ B.

Sobolev equation arises in the flow of fluids through fissured rock [1], thermodynamics shear in second order fluids, consoli-

dation of clay, and other applications [2]. A lot of simulation methods have been put forward for Sobolev equation. For example,

for linear case, Gao and Rui [3] formulated two spliting least-squares mixed finite element procedures, which yielded optimal

order error estimates. The expanded mixed finite element methods(FEMs) were elaborated in [4,5], and optimal order error es-

timates for both the scalar and two vector functions are obtained. As to the nonlinear case, Ewing [6] studied the Galerkin FEM.

[7] investigated semi-discrete and fully-discrete schemes and derived an optimal order error estimation of EQrot
1

nonconforming

finite element [8,9]. Sun and Yang [10] considered a penalty discontinuous Galerkin conforming FEM.

Furthermore, for many other nonlinear physical systems, the time-dependent optimal error estimates with the linearized

Galerkin FEM have been extensively researched, such as nonlinear parabolic problems [11,12], heat and moisture transport system
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in textile materials [13,14], nonlinear Schrödinger equations [15,16], and Navier–Stokes equations [17–19]. Since the boundedness

of the numerical solution in L∞ norm is a key issue in the error analysis, we may use mathematical induction with an inverse

inequality to bound the numerical solution

‖Un
h − Rhun‖L∞ ≤ Ch− d

2 ‖Un
h − Rhun‖0 ≤ Ch− d

2 (hr+1 + τ m), (1.2)

where Un
h

and un are the finite element solution and the exact solution, respectively, Rh is a certain projection operator. Ob-

viously, the time-step restriction arises from (1.2) immediately, which may result in extremely time-consuming in practical

computations. To avoid this difficulty, Li and Sun [20] proposed a linearized backward Euler–Galerkin FEM for a class of nonlin-

ear parabolic PDEs and obtained the unconditional error estimates. The main idea in [20] is the error splitting technique, which

splitted the numerical error into two parts, the spatial error and the temporal error. Thus, the estimate of (1.2) will be replaced

by

‖Un
h − RhUn‖L∞ ≤ Ch− d

2 ‖Un
h − RhUn‖0 ≤ Ch− d

2 hr+1, (1.3)

without any time-restrictions, where Un is the time-discrete solution. Motivated by this idea, in [21–23], authors investigated the

incompressible miscible flow in porous media, the nonlinear Schrödinger equation and miscible displacement in porous media

and deduced the unconditional error estimates, respectively.

As we know, for the usual mixed FEM, the two approximating spaces must be chosen carefully so that they can satisfy the

so-called Ladyzhenskaya–Babuska–Brezzi (LBB) condition. In order to make this condition to be satisfied easier, Chen and Chen

[24] established a mixed variational form for second elliptic problems in which the two approximating spaces only need to

fulfill a very simple inclusion relationship. Consequently, based on the nonconforming finite element pair EQrot
1

/Q10 × Q01, Shi

and Zhang [25] applied the method to a linear Sobolev equation under the semi-discrete and Euler fully-discrete schemes, and

obtained the corresponding optimal error estimates and superclose results. Shi and Zhang [26], [27] studied the linear parabolic

equation, [26] showed optimal error results of order O(h) by employing the nonconforming finite element pair P1/P0, and [27]

deduced the superclose results of order O(h2) as well as the extrapolations of order O(h3) with the pair EQrot
1

/Q10 × Q01.

As a first attempt, in the present work, under weaker hyphethesis of ut ∈ L2(0, T; H2(�)) instead of ut ∈ L2(0, T; H3(�)) required

in [30], we study a new mixed finite element scheme for the nonlinear Sobolev Eq. (1.1), and obtain the unconditional superclose

and superconvergent results by avoiding the estimate of the numerical solution in L∞-norm. It is worthy to be emphasized that,

since our fully-discrete analysis is defined by an average of those at two consecutive time levels, the linearized system is much

more technically complicated than that for the linearized backward Euler scheme in [20,21].

The rest of the paper is organized as follows. In Section 2, we introduce some notations and the mixed finite element

scheme. In Section 3, the superclose results of order O(h2) for the original variable u in H1-norm and the auxiliary variable

�q = −(a(u)∇ut + b(u)∇u) in L2-norm are deduced for the semi-discrete system. In Section 4, we give the linearized FEM for

the fully-discrete system and derive the corresponding superclose estimates of order O(h2 + τ 2), which are time-independent

by estimating ξ n = τ
∑n

i=2
ξn−ξn−1

τ + ξ 1 in a technical way. In Section 5, the new interpolated postprocessing operators are

constructed which have smaller degrees of freedom than that of [28], and the corresponding global superconvergence results

of order O(h2) and O(h2 + τ 2) are deduced for semi-discrete and fully-discrete systems, respectively. In Section 6, some numeri-

cal results are provided to verify the theoretical analysis, and show the efficiency of the method.

2. Construction of mixed finite elements and preliminaries

Let Th be a regular rectangular subdivision of �. K ∈ Th is an element with four vertices ai and with four edges li = aiai+1, i =
1, 2, 3, 4 (mod 4) parallel to x-axis and y-axis, h = max

K
diam(K). The finite element spaces Vh and �Wh are defined by

Vh = {v; v|K ∈ Q11(K),∀K ∈ Th},V h
0 = {v; v ∈ Vh, v|∂� = 0},

�Wh = { �w = (w1, w2) ∈ (L2(�))2; �w|K ∈ Q01(K)× ∈ Q10(K),∀K ∈ Th},
where Qi j = span{xrys, 0 ≤ r ≤ i, 0 ≤ s ≤ j}.

For v ∈ H2(�), �wh = (w1, w2) ∈ (H1(�))2, we define the associated interpolation operators Ih and �h as

Ih : v ∈ H2(�) → Ihv ∈ Vh, Ih|K = IK , IKv(ai) = v(ai), i = 1, 2, 3, 4,

and

�h : �q ∈ (H1(�))2 → �h�q ∈ �Wh,�h|K = �K ,

∫
li

(�q − �K�q) · �τids = 0,

respectively, where �τi is the unit tangent vector of li.

For u ∈ H3(�), �q ∈ (H2(�))2, there hold [28]

(∇(u − Ihu),∇v) ≤ Ch2‖u‖3‖v‖1, ∀vh ∈ Vh, (2.1)

(�q − �h�q, �wh) ≤ Ch2‖�q‖2‖ �wh‖0, ∀ �wh ∈ �Wh. (2.2)
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