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We develop an algorithm for computation of the zeros of a strictly proper rational transfer

function in partial fraction form, by transforming the problem of finding the roots of the de-

terminant of a frequency-dependent matrix into one of finding the eigenvalues of a compan-

ion matrix comprised of the determinants of a binomial-based set of frequency-independent

matrices. The proposed algorithm offers a fundamentally new approach that avoids solving

severely ill-conditioned system of linear equations, where condition numbers increase rapidly

with frequency. The developed algorithm is straightforward, and enables parallel computation

of the characteristic polynomial coefficients a′
n that comprise the companion matrix to the

characteristic polynomial �nansn of the frequency-dependent matrix. Additionally, the algo-

rithm allows for relatively inexpensive computation of asymptotically accurate approximants

of the transfer function, such that a′
n need be computed only for selected powers of s = jω,

where the number of required determinant operations are shown to be relatively small. Ad-

ditionally, limitations of the developed algorithm are highlighted, where the computational

cost is shown to be on the order O(2Np) determinant operations on matrices of dimensions

(Np + 1) × (Np + 1), and Np is the number of poles. Illustrative numerical examples are se-

lected and discussed to provide further insight about pros/cons of the proposed method, and

to identify potential areas for further research.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Sustaining the fast growing technology trends in wireless, mobile, low-power, ultra-thin, and high-speed microelectronic

circuits and systems is critically contingent upon the accurate and efficient analysis, design, and optimization of the signal and

power networks of the systems on chip and systems on package [1]; this requires accurate and stable frequency- and time-

domain models and methodologies for signal and power integrity simulations [2–4].

Often, in signal and power integrity analysis, the transfer function (TF) of various elements, devices, and systems are expressed

in terms of frequency-dependent multi-port network scattering parameters (S-parameters); this is the case for models of the

interconnect of transmission lines [5] in an integrated circuit (IC) which connects the transistors on-die, to the package pins (or

balls, pads, lands, etc.) on the printed circuit board (PCB).

Given the broadband character of high-speed digital signals propagating through the interconnect, the interconnect system

model needs to cover a wide range of frequencies (typically from DC to tens of GHz). Due to the immense complexity in material
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and geometric properties of the interconnect system, its TF is usually obtained as numerical (tabulated) multi-port frequency-

dependent S-parameters [6], either through measurement (e.g., Vector Network Analyzer), or through solving Maxwell’s equa-

tions using field-solver software (e.g., [7]). Subsequently, the tabulated TF may be transformed into an equivalent circuit model

(e.g., through vector fitting [8]) and attached to other device (SPICE) models that act as excitation or load to the interconnect

system, and the entire system may be simulated to optimize the design.

In the process of signal and power integrity characterization, modeling, and simulation, the tabulated interconnect TF may

be expressed as a rational function in the partial fraction form with poles and residues [9]. It is often desired (and sometimes

necessary) to convert from this pole/residue form into the equivalent pole/zero form; examples of this include, system-zero

identification, TF inversion [10] (e.g. impedance to admittance, etc.), equivalent circuit synthesis [11], stability analysis [12], root-

causing of system interference problems, etc.

Previous investigations [8,13,14] have developed novel techniques for finding the poles/residues of the partial fraction form,

primarily by minimizing the error between the partial fraction approximant and the tabulated data. In this work, we have three

main contributions, as follows. (1) We develop an algorithm that operates on a strictly proper rational TF in pole/residue form, and

produces the TF zeros; note that [8] only addresses the (non-strictly) proper rational TF. The proposed method is believed to be

new, and provides an exact solution to the zeros, while (2) providing a convenient mechanism for polynomial truncation which

enables accurate asymptotic approximation. (3) We present carefully selected numerical examples and provide discussion to

highlight some of the important strengths and weaknesses of the proposed method, while pointing out potential areas for future

research.

In Section 2, we provide some background information about linear time invariant (LTI) systems embodied as strictly proper

rational transfer functions, in the partial fraction form. In Section 3 we develop the formulation that leads to the proposed

algorithm. The numerical results are presented in Section 4, and discussion and conclusions are provided in Section 5.

2. Background

A linear time-invariant system [15] may be expressed in the usual matrix notation, as follows

ẋ(t) = A · x(t) + B · u(t)

y(t) = C · x(t) + D · u(t), (1)

where the system state is x(t), its time derivative is ẋ = d
dt

x(t), the input to the system is u(t), the output of the system is y(t), and

A, B, C, D are time-invariant system matrices.

Taking the Laplace transform [16] of the above system, yields

sX(s) = A · X(s) + B · U(s)

Y(s) = C · X(s) + D · U(s), (2)

where X(s), Y(s), and, U(s), are the Laplace transforms of x(t), y(t), and u(t); respectively. The Laplace variable s = σ + jω, where

σ is the attenuation term in units of (Hz), ω (rad/sec) is the angular frequency, and the imaginary number j = √−1.

Solving for X(s) in the first line of (2), and substitution in the second line of (2), results in

Y(s) = H(s) · U(s), (3)

where the system transfer function H(s) is given by

H(s) = C · (sI − A)−1B + D (4)

Note that the passive system TF (e.g. the transmission lines in microelectronic interconnect) in the Laplace domain, may be

mathematically represented as a rational function [17,18] which is a ratio of two polynomials

H(s) = Q(s)

P(s)
= a0 + a1s + · · · + aNq−1sNq−1 + sNq

b0 + b1s + · · · + bNp−1sNp−1 + sNp
, (5)

where the {Nq, Np} ∈ Integers, {an, bn} ∈ Reals, and the index {n, p, q} ∈ Integers.

A strictly proper [19] rational function (i.e., Nq < Np), may be written in the partial fraction form, as follows

H(s) = Q(s)

P(s)
=

Np∑
n=1

cn

s − pn
, (6)

where cn is the nth residue, and pn is the nth pole. It is assumed that all poles are distinct (i.e., pn �= pm, ∀m �= n where m ∈
Integers).

For real residues and poles, it is {cn, pn} ∈ Real. For complex-conjugate pair of poles and residues, the TF is expressed by

H(s) = Q(s)

P(s)
=

Np∑
n=1

cn

s − pn
+ c∗

n

s − p∗
n

, (7)

where cn = cnr + jcni
, pn = pnr + jpni

, xnr denotes the real part and xni
denotes the imaginary part of xn, ∗ is the complex conjugate

operator, {cnr , cni
, pnr , pni

} ∈ Real, and all poles are assumed to be distinct (i.e., pnr ± jpni
�= pmr ± jpmi

,∀m �= n).
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