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a b s t r a c t

In this paper new three-stage W-methods for the time integration of semi-discretized advec-

tion diffusion reaction Partial Differential Equations (PDEs) are provided. In particular, two

three-parametric families of W-methods of order three are obtained under a realistic assump-

tion regarding the commutator of the exact Jacobian and the approximation of the Jacobian

which defines the corresponding W-method. Specific methods are selected by minimizing

error coefficients, enlarging stability regions or increasing monotonicity factors, and embed-

ded methods of order two for an adaptive time integration are derived by further assuming

first order approximations to the Jacobian. The relevance of the newly proposed methods in

connection with the Approximate Matrix Factorization technique is discussed and numerical

illustration on practical PDE problems revealing that the new methods are good competitors

over existing integrators in the literature is provided.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We consider numerical methods for the time integration of a family of initial value problems (IVPs) in ordinary differential

equations (ODEs)

y′
h(t) = fh(t, yh(t)), yh(0) = u∗

0,h, 0 ≤ t ≤ t∗, yh, fh ∈ R
m(h), h → 0+, (1)

coming from the spatial semi-discretization -by means of the method of lines (MOL)- of an l−dimensional advection diffusion

reaction problem in time dependent partial differential equations (PDEs) with prescribed boundary conditions and an initial

condition. Here h denotes a small positive parameter associated with the spatial resolution and usually l = 2, 3, . . . We denote by

uh(t) the solution of the PDE problem confined to the spatial grid (or to the related h-space). It will be tacitly assumed that the

PDE problem admits a smooth solution u(x, t) in the sense that continuous partial derivatives in all variables up to some order p

exist and are continuous and uniformly bounded on � × [0, t∗] and that u(x, t) is continuous on �̄ × [0, t∗] (�̄ = �
⋃

∂�). It is

also assumed that the spatial discretization errors

σh(t) := u′
h(t) − fh(t, uh(t))
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satisfy in the norm considered

‖σh(t)‖ ≤ C hr, C ≥ 0, r > 0, 0 ≤ t ≤ t∗, h → 0+.

Regarding the right-hand side fh in (1), some natural splitting (directional or not)

fh(t, y) =
d∑

j=0

f j,h(t, y) (2)

is considered, in such a way that it also provides a natural splitting for the Jacobian matrix at the current point (tn, yn)

Jh =
d∑

j=0

J j,h, Jh := ∂ fh(tn, yn)

∂y
, J j,h := ∂ f j,h(tn, yn)

∂y
. (3)

The ODE system (1) is usually stiff and implicit integration methods must be applied. However, due to the high dimension of

the problem at hand, special approaches for the solution of the algebraic equations are necessary. One possibility is the use of

Krylov techniques. Krylov methods have been applied successfully in the codes VODPK [3], ROWMAP [27] and EXP4 [13]. Another

strategy is to make use of the special splitting (2) and to exploit the special structure of the matrices Jj,h. This leads to the so-

called Approximate Matrix Factorization (AMF). For a survey regarding AMF methods see [14]. Numerical comparisons of AMF

versus Krylov in Beck et al. [1] show the efficiency of AMF especially for low accuracy solutions.

In this paper we will consider the application of AMF in W-methods. W-methods belong to the class of linearly-implicit

Runge–Kutta methods, which avoid the solution of non-linear algebraic equations arising in implicit Runge–Kutta methods by

incorporating an approximation of the Jacobian directly into the formulation of the method. They can be interpreted as perform-

ing only one step in the Newton iteration. The most popular methods of this class are the so-called ROW-methods, see [16,20],

which are very efficient for the solution of stiff systems for moderate tolerances [12]. ROW-methods use the exact Jacobian fy(yn)

and are usually considered for autonomous problems. Non-autonomous ROW-methods can be formulated by using in addition

ft(tn, yn), [12]. The advantage of ROW-methods is a relatively small number of order conditions allowing the construction of

higher order methods with small numbers of stages. To avoid exact Jacobians, Steihaug and Wolfbrandt [25] consider an arbi-

trary matrix T instead of the exact Jacobian. This reduces the costs but leads to an increase of the number of order conditions and

makes the construction of higher order methods rather difficult. A compromise is the use of an approximation T = fy + O(τ ) of

the Jacobian. For an overview about linearly-implicit Runge–Kutta methods and the order conditions for the different cases see

[26].

In the AMF-context the use of exact Jacobians is not possible. For this reason, we will therefore consider AMF-W-methods.

In detail we study 3-stage methods. By assuming a special relation between the exact Jacobian and the approximation T we will

reduce the number of order conditions. This allows to construct a family of 3-stage methods of order 3 for special problems. We

show that this relation is satisfied for the problem (2) if the splitting matrices Jj, h in (3) commute pairwise, which often holds for

MOL problems. In numerical experiments the advantage of the new methods over existing W-methods is shown.

The reminder of this paper is organized as follows. Section 2 considers the order conditions of W-methods and formulates a

special relation reducing the number of order conditions for order 3, allowing the construction of a family of 3-stage methods of

order 3. In Section 3 free parameters of the methods are determined with respect to accuracy, linear stability and monotonicity.

In Section 4 embedded methods are constructed allowing an efficient error estimation and step size control. In Section 5 the

constructed methods are applied with AMF for the solution of MOL problems (2). Here, both exact and inexact AMF are dis-

cussed. Numerical tests on non-trivial MOL problems are presented in Section 6. Here we compare the new methods with AMF

implementations of various W-methods from literature and with VODPK [3].

2. A family of 3-stage W-methods

We initially assume that the ODE system is autonomous

y′(t) = f (y(t)), y(0) = y0, t ∈ [0, t∗]. (4)

For the integration of (4) we deal with an s-stage W-method given by the formula

(I − θτT)Ki = τ f

(
yn +

i−1∑
j=1

ai jKj

)
+

i−1∑
j=1

�i jKj, i = 1, 2, . . . , s,

yn+1 = yn +
s∑

i=1

biKi, (5)

where T is an arbitrary matrix. The matrix T is expected to be a rough approximation to f ′(yn) = ∂ f

∂y
(yn), but by the moment we

assume that it is arbitrary. By defining the super-vectors KT = (KT
1
, . . . , KT

s ) and F(K)T = ( f (K1)
T , . . . , f (Ks)T ), the strictly lower
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