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ciple of our approach is to approximate the state and control using the Chebyshev polynomials
and collocate the dynamic constraints at the Chebyshev-type points. Furthermore, we present
an exact, efficient, and stable approach for computing the associated Chebyshev integration
matrices. Numerical results on benchmark OCPs demonstrate the spectral rate of convergence
for the proposed methods.
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1. Introduction

Optimal control problems (OCPs) arise naturally in various areas of science, engineering, and mathematics. Considerable work
has been done in the area of classic OCPs whose dynamics are described by ordinary differential equations. Recently, a class of
OCPs whose dynamics are described by Volterra integral equations (VIEs) has received more and more attention. It is well known
that VIEs can be used to model a variety of phenomena such as population dynamics, spread of epidemics, and continuum
mechanics of materials with memory, to name a few but three.

By far, different numerical methods have been proposed for solving OCPs governed by VIEs, which, in general, can be grouped
into two major categories: indirect methods and direct methods. In an indirect method, necessary optimality conditions of an OCP
governed by VIEs are derived by using the calculus of variations, leading to a multiple-point boundary value problem that is then
solved to obtain candidate optimal solutions. The related results can be found in, e.g., [1-7]. In a direct method, a continuous OCP
governed by VIEs is transcribed to a finite-dimensional nonlinear programming problem (NLP) through the parameterization of
the state and/or control variables in some manner, and the resulting NLP is then solved using well-known optimization software.
The related results can be found in, e.g., [8-11]. It is also noteworthy to point out recent interest in developing numerical methods
for solving integral and integro-differential equations [12-27].

The motivation of this paper is to provide a new direct method for the numerical solution of OCPs governed by VIEs using
a spectral collocation approach. More precisely, we develop efficient Chebyshev collocation methods using collocation at the
Chebyshev-type points to convert an OCP governed by VIEs into a NLP. Furthermore, we present an exact, efficient, and stable
approach for computing the associated Chebyshev integration matrices (CIMs), and extend the proposed methods to solving
OCPs governed by Volterra integro-differential equations (VIDEs).

The rest of this paper is organized as follows. In Section 2 the Chebyshev polynomials are presented for subsequent devel-
opments. The OCP governed by VIEs/VIDEs is described in Section 3. In Section 4 the proposed method with collocation at the
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Chebyshev-Gauss (CG) points is derived in detail. The computation of first-order CIM is provided in Section 5. Numerical results
on three benchmark OCPs are shown in Section 6. Finally, Section 7 contains some concluding remarks.

2. Chebyshev polynomials

The Chebyshev polynomials of the first kind are orthogonal polynomials on the interval [-1, +1], and satisfy the following
orthogonality relation:
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where w, (1) = «/1172 is the Chebyshev weight function, J;; is the Kronecker delta function, and Ay, is the normalization factor,
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The three-term recursion formula for the Chebyshev polynomials is given by
T(z) =1, T(r) =71, (3a)
T (1) = 2tT(t) - Tha(T), n=1,2,... (3b)
Some important properties of the Chebyshev polynomials are given by Canuto et al. 28]
T(£1) = (£1)" (4a)
IT(D)] =1 (4b)
L(=71) = (- D"Th(7) (4c)
1 n=0
[n/2]
T.(t) = n (=D™n-m-1)"! _, o (4d)
na' 3, 22m+1ml(n —2m)! v =12,
m=0
1, n=0
1 /
ho = | e = 550 "=t (4¢)

o pa—
2(n+1) T 2(n—1) "
where |[n/2| denotes the largest integer less than or equal to n/2.
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3. OCP governed by VIE/VIDE
3.1. OCP governed by VIE

Consider the following general OCP governed by VIE. Determine the state, x(t) € R™, control, u(t) € R™, initial time, ty € R,
and final time, t; € R, on the time interval t € [tp, tf] that minimize the cost functional

t,
J = plx(to). to. x(t). ) + / "gx(®).u().0de ek, (5)
subject to the dynamic constraints
x(t) = h(t) + / CF(e.x(s).u(s).5)ds € B™, 6)
to

the inequality path constraints

c(x(t),u(t),t) <0 eR™, (7)
and the boundary conditions

b(x(to). to. x(t). tf) = 0 € R™. (8)
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