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a b s t r a c t

In this paper, we study a class of absolute value equations associated with circular cone (CCAVE

for short), which is a generalization of the absolute value equations discussed recently in the

literature, analogously to the fact that circular cone is the very generalization of the second-

order cone. We show that the CCAVE is equivalent to a class of circular cone linear complemen-

tarity problems, and hence generalize the well-known equivalence between absolute value

equations and linear complementarity problems. Useful properties of the generalized differ-

ential of the absolute value function over the circular cone are investigated, which helps to

propose a generalized Newton method for solving the CCAVE. The convergence of this method

is established under mild conditions, as well as the efficiency of which is illustrated by some

preliminary numerical results.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The target problem of this paper is the following absolute value equations associated with circular cones (CCAVE for short):

Ax + B|x| = b, (1)

where A, B ∈ R
m × n and b ∈ R

m are given data; x = (xT
1
, · · · , xT

r )
T ∈ R

n1 × · · · × R
nr is a variable with n1 + · · · + nr = n; and |x|

denotes the absolute value of x which is determined by the corresponding circular cones and will be given in detail in the

following section. Let m, n, r, n1, ���, nr be positive integers. The Cartesian product Lθ of circular cones Lni

θ
’s (CC for short) is

denoted as

Lθ := Ln1

θ
× · · · × Lnr

θ
,

where every Lni

θ
denotes a circular cone in R

ni defined by

Lni

θ
:= {xi = (xi1, xi2) ∈ R × R

ni−1 | ‖xi‖ cos θ ≤ xi1} (2)

:= {xi = (xi1, xi2) ∈ R × R
ni−1 | ‖xi2‖ ≤ xi1 tan θ}

with ‖·‖ denoting the usual Euclidean norm of a vector. The circular cone [23] is a pointed closed convex cone having hyperspher-

ical sections orthogonal to its axis of revolution about which the cone is invariant with respect to rotation. The circular cone is
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the very generalization of the second-order cone which is a powerful tool to handle optimization problems, and the relations

between circular cone and second-order cone are as follows:

Lθ = A−1Kn and Kn = ALθ with A =
[

tan θ 0
0 I

]
,

which is proved in [23], Theorem 2.1. Likewise, for any x = (x1, x2) ∈ R × R
n−1 and y = (y1, y2) ∈ R × R

n−1, there have

x ∈ Lθ ⇐⇒ Ax ∈ Kn, y ∈ L∗
θ ⇐⇒ A−1y ∈ Kn. (3)

The standard absolute value equations (AVEs for short) in R
n study the system

Ax + B|x| = b, where |x| := (|x1|, |x2|, · · · , |xn|)T ∈ R
n,

which were first introduced by Rohn [22] and are capable to formulate many optimization problems [12,16,20]. Recently, the

AVEs have been extensively studied, see [6,7,10,13,15–19] and references therein. For the above AVEs and the CCAVEs (1), with

the definition of the absolute value function over the circular cone (cf. (8)), it is easy to see that the CCAVEs (1) reduces to the

SOCAVEs when θ = π
4 which be studied in [7], and the CCAVEs (1) reduces to the AVEs when n1 = n2 = · · · = nr = 1 and θ = π

4 .

Henceforth, the CCAVEs (1) is a generalization of the previous AVEs and the SOCAVEs. More interestingly, it will be shown (cf.

Theorem 2.1) that the CCAVEs (1) are equivalent to the following circular cone linear complementarity problems (CCLCP for

short): find the elements z, w ∈ R
n such that

Mz + Pw = b

z ∈ Lθ , w ∈ L∗
θ , 〈z, w〉 = 0, (4)

where M, P ∈ R
m × n and c ∈ R

m are given matrices and vector, respectively. We know that the complementarity problem plays

a fundamental role in optimization theory and has many applications in engineering and economics [3,4,7–9,11]. Therefore, it

would be worth exploring the absolute value equations, and it is one of the motivations of this work.

Towards to solutions of the AVEs, various numerical methods for solving the AVEs were proposed in the literature (see

[2,7,13,14,25] and references therein). In this paper, we are interested in a generalized Newton method for solving the CCAVEs

with m = n. More specifically, we show that the generalized Newton method is well-defined under an assumption that the all sin-

gular values of the matrix A exceed the maximal singular value of the matrix B. Furthermore, under suitable conditions, we show

that this proposed method is globally linearly and locally quadratically convergent. In addition, we present some preliminary

numerical results of the proposed method for solving the CCAVEs (1) to illustrate the efficiency of the proposed method.

The remaining parts of this paper are organized as follows. In Section 2, we give the explicit formula of projection of x ∈ R
n

onto Lθ and L∗
θ

. Some concepts and preliminary results on the circular cone are given in this section. We study the Generalized

Jocobian of the absolute value function |x| and its properties in Section 3. In Section 4, we propose a generalized Newton method

for solving the CCAVE (1), and discuss the convergence of the proposed method under suitable conditions. In Section 5, the

preliminary numerical results are given.

2. Preliminaries

In this section, we briefly review some basic concepts and background materials about circular cones, which will be exten-

sively used in the subsequent analysis.

As defined in (3), the circular cone Lθ has a revolution axis which is the ray generated by the canonical vector e1 := (1, 0,…,

0)T ∈ R
n, and its dual cone L∗

θ
is easily seen as

L∗
θ := {y = (y1, y2) ∈ R × R

n−1 | ‖y2‖ sin θ ≤ y1}.
Note that the circular cone Lθ is not a self-dual cone when θ 
= π

4 , that is, L∗
θ


= Lθ whenever θ 
= 45°. Therefore, Lθ is not a

symmetric cone for θ ∈
(
0, π

2

)\{π
4 }. It is also known from [23,24] that the dual cone of Lθ can be expressed as

L∗
θ = {y = (y1, y2) ∈ R × R

n−1 | ‖y2‖ ≤ y1 cot θ} = L π
2 −θ .

In the next section, we talk about the projections onto Lθ and L∗
θ

. To this end, we let x+ denote the projection of x onto the

circular cone Lθ , and x− be the projection of −x onto the dual cone L∗
θ

. With these notations, for any x ∈ R
n, it can be verified

that x = x+ − x−. Moreover, due to the special structure of the circular cone Lθ , the explicit formula of the projection of x ∈ R
n

onto Lθ is obtained in [23] as follows:

x+ =
{

x if x ∈ Lθ ,

0 if x ∈ −L∗
θ
,

u otherwise,

(5)
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