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a b s t r a c t

In interception problems subject to noise corrupted measurements and random bounded tar-

get maneuvers, the miss distance is a random variable with an a-priori unknown distribution.

In previous works, such a miss distance distribution could be obtained by a computational

approach, assuming that the distribution of the zero-effort miss distance estimation error is

known as a function of time. In this paper, this assumption is replaced by an analytical ap-

proach based on the knowledge of the measurement error distribution, the estimator struc-

ture and the (possibly non-linear) guidance law. For this purpose the shaping filter technique

is used, considering that the excitation noise due to the random target maneuvers, as well

as the observation noise, are Gaussian white noises. This analytical approach is illustrated by

numerical examples.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Various real life control problems, such as navigation and interceptor guidance, can be formulated as a problem of transferring

a linear system, in the presence of noise corrupted state measurements and unknown bounded disturbances, to a prescribed

target set in the state space at a prescribed time, by bounded control [1]. In many cases, such a problem can be transformed by a

scalarizing transformation [2] to a problem of robust transferring to a point (final time, zero) in the (time, state) plane.

Assuming perfect state information, several classes of deterministic feedback control strategies that robustly transfer a scalar

system from some domain of initial positions to a point (final time, zero) are known. The family of robust transferring strategies

includes various linear, saturated linear and nonlinear strategies [3] and [4] as well as a differential game based bang–bang

strategy [5].

In most real life applications, the state information is corrupted by measurement noise, and not all of the state variables can

be directly measured. These facts lead to a significant deterioration in the performance of the theoretically robust transferring

strategies. Thus, an estimator, restoring and filtering the state variables, becomes an indispensable component of the control loop.

Due to the noisy measurements and the uncertain disturbance, the control function receives, instead of the accurate state value,

a random estimator output. Consequently, the terminal state value also becomes a random variable with an a-priori unknown

probability distribution. In order to appreciate the performance deterioration of a deterministic robust transferring strategy by

using such stochastic data, the probability distribution of the terminal state value has to be obtained.

In current practice, such a probability distribution is obtained (for any given system dynamics, estimator/control strategy

combination, specified disturbance and noise models) by a large set of Monte Carlo simulations [6] and [7]. Although such an
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Nomenclature

amax
e bound of the target lateral acceleration;

amax
p bound of the interceptor lateral acceleration;

d0 scalar in the description of the target set;

Fz(t)(x) distribution function of the zero-effort miss distance at the moment of time t ∈ [0, tf);

F|zt f
|(x) distribution function of the miss distance;

Fη(t)(x) distribution function of the zero-effort miss distance estimation error at the moment of time t ∈ [0, tf);

k(t) estimator gain vector;

P(t1, t2) covariance matrix of the reconstruction error;

t time, s;

t0 initial time, s;

tf time of flight, s;

u(t) interceptor control function;

Ve target velocity, m/s;

Vp interceptor velocity, m/s;

V(t) white noise intensity;

w1(t) white noise representing the target lateral acceleration;

w2(t) observation (measurement) white noise;

x0 initial vector-state of the system;

x(t) vector-state of the system driven by white noise;

X(t) vector-state of the actual system with random disturbance (target maneuver);

x1(t) = X1(t) separation between the interceptor and the target normal to the initial line of sight, m;

x1(tf) miss distance, m;

x2(t) = X2(t) relative velocity normal to the initial line of sight, m/s;

X3(t) lateral acceleration of the target normal to the initial line of sight, m/s2;

x3(t) the 3-rd vector-state component in the system, driven by white noise, m/s2;

X4(t) lateral acceleration of the interceptor normal to the initial line of sight, m/s2;

x̂(t) estimated vector- state;

x̃(t) estimation error;

y(t) observation (line of sight angle), rad;

z(t) zero-effort miss distance, m;

α reciprocal of the random lateral target acceleration time constant, s−1;

τ s time constant of the shaping filter, s;

τ p interceptor time constant, s;

σ a standard deviation of the random target acceleration;

σ 1 standard deviation of the white noise used in the shaping filter to model the unknown disturbance that acts

upon the system;

σ 2 standard deviation of the observation noise;

η(t) zero-effort miss distance estimation error;

a-posteriori test is absolutely necessary for validation purpose, it is not useful for an insightful control system design. There is a

need for an analytical a-priori estimate of the system performance as a part of an integrated control system design.

In recent previous works dealing with this problem, the system dynamics was modeled either by a discrete [8] or a continu-

ous time [9], scalar linear equation controlled by a saturated linear transferring control strategy. Assuming that the probability

distributions of initial state value and the measurement noise are given and the estimation error of the state is known as a func-

tion of time, a recurrence formula for the probability distribution of the terminal state value was obtained for the discrete time

case [8] while, for continuous time [9], a partial differential equation was derived.

Since in real life the distribution of the zero-effort miss distance estimation error is not known, there is a need to develop an

analytical approach for computing this missing element. The objective of the present paper is to outline this approach. By using

the so-called shaping filter technique [10], the disturbance (a random input to the system) is replaced by the output of a linear

shaping filter exited by a white noise input.

The structure of the paper is the following: in the next section the stochastic control problem of the interception, subject

to noise corrupted measurement and random bounded target maneuvers, is stated. It is followed by determining the stochastic

model, suitable for use, where the shaping filter is applied. The next section is devoted to the construction of a linear state vector

estimator, optimal in the sense of unbiasedness and minimal variance. This estimator is used to find the distribution of the state

estimation error as a function of time, based on solving the Riccati equation numerically. Introducing this result into the partial

differential equation derived in [9] and solving this equation yields the needed distribution of the terminal state.

The last section presents illustrative numerical examples.
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