FISEVIER

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Degenerate poly-Cauchy polynomials

Dmitry V. Dolgy^a, Dae San Kim^b, Taekyun Kim^c, Toufik Mansour^{d,*}

- ^a Institute of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia
- ^b Department of Mathematics, Sogang University, Seoul 121-742, S. Korea
- ^c Department of Mathematics, Kwangwoon University, Seoul 139-701, S. Korea
- ^d Department of Mathematics, University of Haifa, Haifa 3498838, Israel

ARTICLE INFO

MSC: 05A19 05A40 11B83

Keywords:
Bernoulli polynomials
Poly-Cauchy polynomials
Degenerate poly-Cauchy polynomials
Umbral calculus

ABSTRACT

In this paper, we study several properties for the degenerate poly-Cauchy polynomials. We present several explicit formulas and recurrence relations for these polynomials. Also, we establish a connection between our polynomials and several known families of polynomials.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The poly-Cauchy polynomials of the first kind $C_n^{(k)}(x)$ and of the second kind $\widehat{C}^{(k)}(x)$ are respectively defined by

$$Lif_k(\log(1+t))(1+t)^x = \sum_{n>0} C_n^{(k)}(x) \frac{t^n}{n!},$$

$$Lif_k(-\log(1+t))(1+t)^{-x} = \sum_{n>0} \widehat{C}_n^{(k)}(x) \frac{t^n}{n!},$$

for all $k \in \mathbb{Z}$, where

$$Lif_k(x) = \sum_{m>0} \frac{x^m}{m!(m+1)^k}$$
 (1.1)

is the polylogarithm factorial function. When x=0, $C_n^{(k)}=C_n^{(k)}(0)$ and $\widehat{C}_n^{(k)}=\widehat{C}_n^{(k)}(0)$ are respectively called the poly-Cauchy numbers of the first kind and of the second kind. The poly-Cauchy polynomials, poly-Cauchy numbers, Barnes-type Daehee of the first kind and poly-Cauchy of the first kind mixed-type polynomials, and the polylogarithm factorial function are found in [12–14].

Here we introduce the degenerate versions of the poly-Cauchy polynomials. Namely, the *degenerate poly-Cauchy polynomials* $C_n^{(k)}(\lambda, x)$ of the first kind and $\widehat{C}_n^{(k)}(\lambda, x)$ of the second kind are respectively given by

$$Lif_k\left(\frac{(1+t)^{\lambda}-1}{\lambda}\right)(1+t)^{\chi} = \sum_{n\geq 0} C_n^{(k)}(\lambda,\chi)\frac{t^n}{n!},\tag{1.2}$$

^{*} Corresponding author. Tel.: +972 4 8240705; fax: +972 4 8240024.

E-mail addresses: d_dol@mail.ru (D.V. Dolgy), dskim@sogang.ac.kr (D.S. Kim), tkkim@kw.ac.kr (T. Kim), toufik@math.haifa.ac.il, tmansour@univ.haifa.ac.il (T. Mansour).

$$Lif_k\left(-\frac{(1+t)^{\lambda}-1}{\lambda}\right)(1+t)^{-x} = \sum_{n\geq 0} \widehat{C}_n^{(k)}(\lambda,x)\frac{t^n}{n!}.$$
 (1.3)

We observe that $\lim_{\lambda \to 0} C_n^{(k)}(\lambda, x) = C_n^{(k)}(x)$ and $\lim_{\lambda \to 0} \widehat{C}_n^{(k)}(\lambda, x) = \widehat{C}_n^{(k)}(x)$. When x = 0, $C_n^{(k)}(\lambda, 0)$ and $\widehat{C}_n^{(k)}(\lambda, 0)$ are respectively called the *degenerate poly-Cauchy numbers* of the first kind and of the second kind.

The purpose of this paper is to use umbral calculus techniques (see [17,18]) in order to derive some properties, recurrence relations, and identities for the degenerate poly-Cauchy polynomials of the first kind and of the second kind. From (1.2) and (1.3), it is immediate to see that $C_n^{(k)}(\lambda, x)$ is the Sheffer sequence for the pair $g(t) = \frac{1}{Lif_{t}(e^{2\lambda t}-1)}$, $f(t) = e^t - 1$, and that $\widehat{C}_n^{(k)}(\lambda, x)$ is the

Sheffer sequence for the pair $g(t)=\frac{1}{Lif_k(-\frac{e^{-\lambda t}-1}{3})}, f(t)=e^{-t}-1.$ Thus,

$$C_n^{(k)}(\lambda, x) \sim \left(\frac{1}{Lif_k\left(\frac{e^{\lambda t}-1}{\lambda}\right)}, e^t - 1\right),$$
 (1.4)

$$\widehat{C}_{n}^{(k)}(\lambda, x) \sim \left(\frac{1}{\operatorname{Lif}_{k}\left(-\frac{e^{-\lambda t}-1}{\lambda}\right)}, e^{-t} - 1\right). \tag{1.5}$$

Umbral calculus has been used in numerous problems of mathematics (for example, see [1,3,5,7,8]) and used in different areas of physics; for example it is used in group theory and quantum mechanics by Biedenharn et al. [5,6] (for other examples, see [9,11–14,16,19] and references therein).

2. Explicit expressions

In this section we present several explicit formulas for the degenerate poly-Cauchy polynomials, namely $C_n^{(k)}(\lambda, x)$ and $\widehat{C}_n^{(k)}(\lambda, x)$. To do so, we recall that Stirling numbers $S_1(n, k)$ of the first kind can be defined by means of exponential generating functions as

$$\sum_{\ell > j} S_1(\ell, j) \frac{t^{\ell}}{\ell} = \frac{1}{j!} \log^j (1 + t)$$
 (2.1)

and can be defined by means of ordinary generating functions as

$$(x)_n = \sum_{m=0}^n S_1(n, m) x^m \sim (1, e^t - 1), \tag{2.2}$$

where $(x)_n = x(x-1)(x-2)\cdots(x-n+1)$ with $(x)_0 = 1$.

Theorem 2.1. *For all* $n \ge 0$,

$$\begin{split} C_{n}^{(k)}(\lambda, x) &= \sum_{j=0}^{n} \left(\sum_{\ell=j}^{n} \binom{n}{\ell} S_{1}(\ell, j) C_{n-\ell}^{(k)}(\lambda, 0) \right) x^{j}, \\ \widehat{C}_{n}^{(k)}(\lambda, x) &= \sum_{j=0}^{n} (-1)^{j} \left(\sum_{\ell=j}^{n} \binom{n}{\ell} S_{1}(\ell, j) \widehat{C}_{n-\ell}^{(k)}(\lambda, 0) \right) x^{j}, \end{split}$$

Proof. It is well known that $s_n(x) = \sum_{j=0}^n \frac{1}{j!} \langle \frac{1}{g(\bar{f}(t))} \bar{f}(t)^j | x^n \rangle x^j$, for all $s_n(x) \sim (g(t), f(t))$ (see [17,18]). For the pair (g(t), f(t)) in (1.4), we obtain

$$\left\langle \frac{1}{g(\bar{f}(t))} \bar{f}(t)^{j} | x^{n} \right\rangle = \left\langle Lif_{k} \left(\frac{(1+t)^{\lambda} - 1}{\lambda} \right) (\log (1+t))^{j} | x^{n} \right\rangle$$
$$= \left\langle Lif_{k} \left(\frac{(1+t)^{\lambda} - 1}{\lambda} \right) | (\log (1+t))^{j} x^{n} \right\rangle.$$

Thus, by (2.1) and then by (1.2), we have

$$\begin{split} \left\langle \frac{1}{g(\bar{f}(t))} \bar{f}(t)^{j} | x^{n} \right\rangle &= j! \sum_{\ell=j}^{n} \binom{n}{\ell} S_{1}(\ell, j) \left\langle Lif_{k} \left(\frac{(1+t)^{\lambda} - 1}{\lambda} \right) | x^{n-\ell} \right\rangle \\ &= j! \sum_{\ell=j}^{n} \binom{n}{\ell} S_{1}(\ell, j) C_{n-\ell}^{(k)}(\lambda, 0), \end{split}$$

which implies that $C_n^{(k)}(\lambda,x) = \sum_{j=0}^n \left(\sum_{\ell=j}^n \binom{n}{\ell} S_1(\ell,j) C_{n-\ell}^{(k)}(\lambda,0) \right) x^j$. Similarly, for the pair (g(t),f(t)) in (1.5), we obtain the formula for the poly-Cauchy polynomials of the second kind. \Box

Download English Version:

https://daneshyari.com/en/article/6420167

Download Persian Version:

https://daneshyari.com/article/6420167

<u>Daneshyari.com</u>