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MSsC: In this paper, we study several properties for the degenerate poly-Cauchy polynomials. We
05A19 present several explicit formulas and recurrence relations for these polynomials. Also, we es-
(1);31/3\:3 tablish a connection between our polynomials and several known families of polynomials.
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1. Introduction

The poly-Cauchy polynomials of the first kind C,Sk) (x) and of the second kind c® (x) are respectively defined by
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for all k € Z, where
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is the polylogarithm factorial function. When x = 0, C,gk) = C,gk) (0) and f(n") = 6,(1") (0) are respectively called the poly-Cauchy num-
bers of the first kind and of the second kind. The poly-Cauchy polynomials, poly-Cauchy numbers, Barnes-type Daehee of the first
kind and poly-Cauchy of the first kind mixed-type polynomials, and the polylogarithm factorial function are found in [12-14].

Here we introduce the degenerate versions of the poly-Cauchy polynomials. Namely, the degenerate poly-Cauchy polynomials
C,(,k) (A, x) of the first kind and 6,(11‘) (A, x) of the second kind are respectively given by

Lifk<(1+tx)k_1> (1+1t) = Zc,ﬁ”(x,x)% (12)
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We observe thatlim; _, C,gk) X, x)=C, & (x) and lim,__, f(k) (A, x) = A(k) (x). Whenx =0, C,(f‘) (A,0) and 6},’0 (A, 0) are respectively
called the degenerate poly-Cauchy numbers of the first kind and of the second kind.

The purpose of this paper is to use umbral calculus techniques (see [17,18]) in order to derive some properties, recurrence
relations, and identities for the degenerate poly-Cauchy polynomials of the first kind and of the second kind. From (1.2) and (1.3),
it is immediate to see that C* (), x) is the Sheffer sequence for the pair g(t) = Lf(elikm) f(t) = et — 1, and that C (1, x) is the
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Sheffer sequence for the pair g(t) = , f(t) = et —1.Thus,
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Umbral calculus has been used in numerous problems of mathematics (for example, see [1,3,5,7,8]) and used in different
areas of physics; for example it is used in group theory and quantum mechanics by Biedenharn et al. [5,6] (for other examples,
see [9,11-14,16,19] and references therein).

2. Explicit expressions

In this section we present several explicit formulas for the degenerate poly-Cauchy polynomials, namely C,Sk) (A,x) and
c“,,“ (A, x). To do so, we recall that Stirling numbers S;(n, k) of the first kind can be defined by means of exponential generat-
ing functions as
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and can be defined by means of ordinary generating functions as
n
(On =) _Si(n,mx™ ~ (1,¢" - 1), (2.2)
m=0
where (X), =x(x—-1)(x —2) --- (x = n+ 1) with (x)g = 1.
Theorem 2.1. Foralln >0,
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Proof. It is well known that s,(x) = Z?:o ].1—,( F(t)F|xM)xd, for all sp(x) ~ (g(t), fit)) (see [17,18]). For the pair (g(t), f(t)) in
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(1.4), we obtain
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Thus, by (2.1) and then by (1.2), we have
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which implies that G (1. %) = 1o (X0 (MS; (€. HEY, (1. 0))xI. Similarly, for the pair (g(t), f(t)) in (1.5), we obtain the for-
mula for the poly-Cauchy polynomials of the second kind. O
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